Publications by authors named "Arefiev A"

Article Synopsis
  • Direct laser acceleration (DLA) can boost electrons in low-density plasmas up to near-GeV energies, potentially generating hundreds of nC of electrons with current lasers.
  • The study emphasizes the importance of electron transverse displacement in predicting maximum electron energies and shows that this aligns with advanced particle-in-cell simulations of laser interactions with plasma.
  • Strategies for optimizing DLA using matched laser focusing are outlined, indicating that future lasers operating at intensities around 10^21 W/cm² could achieve electron energies exceeding 10 GeV.
View Article and Find Full Text PDF

Electrostatic waves play a critical role in nearly every branch of plasma physics from fusion to advanced accelerators, to astro, solar, and ionospheric physics. The properties of planar electrostatic waves are fully determined by the plasma conditions, such as density, temperature, ionization state, or details of the distribution functions. Here we demonstrate that electrostatic wave packets structured with space-time correlations can have properties that are independent of the plasma conditions.

View Article and Find Full Text PDF

Intense lasers enable generating high-energy particle beams in university-scale laboratories. With the direct laser acceleration (DLA) method, the leading part of the laser pulse ionizes the target material and forms a positively charged ion plasma channel into which electrons are injected and accelerated. The high energy conversion efficiency of DLA makes it ideal for generating large numbers of photonuclear reactions.

View Article and Find Full Text PDF

Intense laser fields interact very differently with micrometric rough surfaces than with flat objects. The interaction features high laser energy absorption and increased emission of MeV electrons, ions, and of hard x-rays. In this work, we irradiated isolated, translationally-symmetric objects in the form of micrometric Au bars.

View Article and Find Full Text PDF

We discovered a simple regime where a near-critical plasma irradiated by a laser of experimentally available intensity can self-organize to produce positrons and accelerate them to ultrarelativistic energies. The laser pulse piles up electrons at its leading edge, producing a strong longitudinal plasma electric field. The field creates a moving gamma-ray collider that generates positrons via the linear Breit-Wheeler process-annihilation of two gamma rays into an electron-positron pair.

View Article and Find Full Text PDF

Strong laser-driven magnetic fields are crucial for high-energy-density physics and laboratory astrophysics research, but generation of axial multikilotesla fields remains a challenge. The difficulty comes from the inability of a conventional linearly polarized laser beam to induce the required azimuthal current or, equivalently, angular momentum (AM). We show that several laser beams can overcome this difficulty.

View Article and Find Full Text PDF

Using two-dimensional (2D) and three-dimensional (3D) kinetic simulations, we examine the impact of simulation dimensionality on the laser-driven electron acceleration and the emission of collimated γ-ray beams from hollow microchannel targets. We demonstrate that the dimensionality of the simulations considerably influences the results of electron acceleration and photon generation owing to the variation of laser phase velocity in different geometries. In a 3D simulation with a cylindrical geometry, the acceleration process of electrons terminates early due to the higher phase velocity of the propagating laser fields; in contrast, 2D simulations with planar geometry tend to have prolonged electron acceleration and thus produce much more energetic electrons.

View Article and Find Full Text PDF

We use 3D simulations to demonstrate that high-quality ultrarelativistic electron bunches can be generated on reflection of a twisted laser beam off a plasma mirror. The unique topology of the beam with a twist index |l|=1 creates an accelerating structure dominated by longitudinal laser electric and magnetic fields in the near-axis region. We show that the magnetic field is essential for creating a train of dense monoenergetic bunches.

View Article and Find Full Text PDF

A high energy density plasma embedded in a neutral gas is able to launch an outward-propagating nonlinear electrostatic ionization wave that traps energetic electrons. The trapping maintains a strong sheath electric field, enabling rapid and long-lasting wave propagation aided by field ionization. Using 1D3V kinetic simulations, we examine the propagation of the ionization wave in the presence of a transverse MG-level magnetic field with the objective to identify qualitative changes in a regime where the initial thermal pressure of the plasma exceeds the pressure of the magnetic field (β>1).

View Article and Find Full Text PDF

We present the first 3D fully kinetic simulations of laser driven sheath-based ion acceleration with a kilotesla-level applied magnetic field. The application of a strong magnetic field significantly and beneficially alters sheath based ion acceleration and creates two distinct stages in the acceleration process associated with the time-evolving magnetization of the hot electron sheath. The first stage delivers dramatically enhanced acceleration, and the second reverses the typical outward-directed topology of the sheath electric field into a focusing configuration.

View Article and Find Full Text PDF

A microtube implosion driven by ultraintense laser pulses is used to produce ultrahigh magnetic fields. Due to the laser-produced hot electrons with energies of mega-electron volts, cold ions in the inner wall surface implode towards the central axis. By pre-seeding uniform magnetic fields on the kilotesla order, the Lorenz force induces the Larmor gyromotion of the imploding ions and electrons.

View Article and Find Full Text PDF

A high-intensity laser beam propagating through a dense plasma drives a strong current that robustly sustains a strong quasistatic azimuthal magnetic field. The laser field efficiently accelerates electrons in such a field that confines the transverse motion and deflects the electrons in the forward direction. Its advantage is a threshold rather than resonant behavior, accelerating electrons to high energies for sufficiently strong laser-driven currents.

View Article and Find Full Text PDF

This paper deals with electron acceleration by a laser pulse in a plasma with a static uniform magnetic field B_{*}. The laser pulse propagates perpendicular to the magnetic field lines with the polarization chosen such that (E_{laser}·B_{*})=0. The focus of the work is on the electrons with an appreciable initial transverse momentum that are unable to gain significant energy from the laser in the absence of the magnetic field due to strong dephasing.

View Article and Find Full Text PDF

Conventionally, friction is understood as a mechanism depleting a physical system of energy and as an unavoidable feature of any realistic device involving moving parts. In this work, we demonstrate that this intuitive picture loses validity in nonlinear quantum electrodynamics, exemplified in a scenario where spatially random friction counter-intuitively results in a highly directional energy flow. This peculiar behavior is caused by radiation friction, i.

View Article and Find Full Text PDF

Laser-driven ion acceleration is often analyzed assuming that ionization reaches a steady state early in the interaction of the laser pulse with the target. This assumption breaks down for materials of high atomic number for which the ionization occurs concurrently with the acceleration process. Using particle-in-cell simulations, we have examined acceleration and simultaneous field ionization of copper ions in ultra-thin targets (20-150 nm thick) irradiated by a laser pulse with intensity 1 × 10 W/cm.

View Article and Find Full Text PDF

Breaking the 100-MeV barrier for proton acceleration will help elucidate fundamental physics and advance practical applications from inertial confinement fusion to tumour therapy. Herein we propose a novel concept of bubble implosions. A bubble implosion combines micro-bubbles and ultraintense laser pulses of 10-10 W cm to generate ultrahigh fields and relativistic protons.

View Article and Find Full Text PDF

We use numerical simulations to demonstrate that a source of collimated multi-MeV photons with high conversion efficiency can be achieved using an all-optical single beam setup at an intensity of 5×10^{22}  W/cm^{2} that is already within reach of existing laser facilities. In the studied setup, an unprecedented quasistatic magnetic field (0.4 MT) is driven in a significantly overdense plasma, coupling three key aspects of laser-plasma interactions at high intensities: relativistic transparency, direct laser acceleration, and synchrotron photon emission.

View Article and Find Full Text PDF

The interaction of a multipicosecond, kilojoule laser pulse with a surface of a solid target has been shown to produce electrons with energies far beyond the free-electron ponderomotive limit m_{e}c^{2}a_{0}^{2}/2. Particle-in-cell simulations indicate that an increase in the pulse duration from 1 to 10 ps leads to the formation of a low-density shelf (about 10% of the critical density). The shelf extends over 100  μm toward the vacuum side, with a nonstationary potential barrier forming in that area.

View Article and Find Full Text PDF

3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. For an anisotropic electron distribution, propagation characteristics, like the critical density, will depend on the polarization of the electromagnetic wave. Despite the onset of the Weibel instability in such plasmas, the anisotropy can persist long enough to affect laser propagation.

View Article and Find Full Text PDF

We report on a novel compact laser-driven neutron source with an unprecedented short pulse duration (<50  ps) and high peak flux (>10(18)  n/cm(2)/s), an order of magnitude higher than any existing source. In our experiments, high-energy electron jets are generated from thin (<3  μm) plastic targets irradiated by a petawatt laser. These intense electron beams are employed to generate neutrons from a metal converter.

View Article and Find Full Text PDF

We present experimental evidence supported by simulations of a relativistic ionization wave launched into a surrounding gas by the sheath field of a plasma filament with high energy electrons. Such a filament is created by irradiating a clustering gas jet with a short pulse laser (115  fs) at a peak intensity of 5×10(17)  W/cm2. We observe an ionization wave propagating radially through the gas for about 2 ps at 0.

View Article and Find Full Text PDF

It is shown that electrons with momenta exceeding the "free electron" limit of m(e)ca(0)(2)/2 can be produced when a laser pulse and a longitudinal electric field interact with an electron via a non-wake-field mechanism. The mechanism consists of two stages: the reduction of the electron dephasing rate γ - p(x)/m(e)c by an accelerating region of electric field and electron acceleration by the laser via the Lorentz force. This mechanism can, in principle, produce electrons that have longitudinal momenta that is a significant multiple of m(e)ca(0)(2)/2.

View Article and Find Full Text PDF

A new mechanism is reported that increases electron energy gain from a laser beam of ultrarelativistic intensity in underdense plasma. The increase occurs when the laser produces an ion channel that confines accelerated electrons. The frequency of electron oscillations across the channel is strongly modulated by the laser beam, which causes parametric amplification of the oscillations and enhances the electron energy gain.

View Article and Find Full Text PDF

Acoustic cavitation generates very large localized pressures and temperatures, and thus provides a mechanism whereby physical and biological effects are produced in a high-intensity acoustic field. In this work, we studied the influence of the temporal form of a pressure pulse waveform on the destructive effects of transient cavitation. Two different shock pressure-time waveforms with nearly the same acoustic energy content were used.

View Article and Find Full Text PDF