Efficiently predicting the paratope holds immense potential for enhancing antibody design, treating cancers and other serious diseases, and advancing personalized medicine. Although traditional methods are highly accurate, they are often time-consuming, labor-intensive, and reliant on 3D structures, restricting their broader use. On the other hand, machine learning-based methods, besides relying on structural data, entail descriptor computation, consideration of diverse physicochemical properties, and feature engineering.
View Article and Find Full Text PDF