Publications by authors named "Ardiyah Nurul Fitri Marzaman"

Doxycycline hyclate (DOXY) is a tetracycline derivative known as the broad-spectrum bacteriostatic drug. DOXY has been suggested as the first-line antibiotic for diabetic foot ulcers (DFU). Unfortunately, the long-term availability of DOXY in both oral and conventional topical dosage forms reduces its therapeutic effectiveness, which is closely linked to gastrointestinal side effects and acute pain during therapy, as well as uncontrolled DOXY release at the wound site.

View Article and Find Full Text PDF

Globally, the increase of pathogenic bacteria with antibiotic-resistant characteristics has become a critical challenge in medical treatment. The misuse of conventional antibiotics to treat an infectious disease often results in increased resistance and a scarcity of effective antimicrobials to be used in the future against the organisms. Here, we discuss the rise of antimicrobial resistance (AMR) and the need to combat it through the discovery of new synthetic or naturally occurring antibacterial compounds, as well as insights into the application of various drug delivery approaches delivered via various routes compared to conventional delivery systems.

View Article and Find Full Text PDF

Safflower (Carthamus tinctorius L.) has been explored as a source of natural antioxidant. However, quercetin 7-O-beta-D-glucopyranoside and luteolin 7-O-beta-D-glucopyranoside, as its bioactive compounds, possessed poor aqueous solubility, limiting its efficacy.

View Article and Find Full Text PDF

One of the biggest challenges in infectious disease treatment is the existence of bacterial infections in underskin wound tissue, such as cellulitis. Compared to other treatments, it is harder for antibacterial drugs to penetrate the physical barrier on the affected skin with a nonspecific target, making conventional therapy for cellulitis infection more difficult and considered. In this novel research, we pioneer a combined strategy of dissolving microneedles (MNs) and bacteria-sensitive microparticles (MPs) for enhanced penetration and targeted delivery of chloramphenicol (CHL) to the infection site specifically.

View Article and Find Full Text PDF

Skin wounds have been reported to increase the number of microbial colonies susceptible to infection. Treatments using oral antibiotics have been limited due to their toxicity and hydrophobic characteristics. In this study, we developed a formulation of chloramphenicol microparticles (CPL MPs), which was modified into chitosan hydrogel to increase treatment efficiency in targeting infections and creating an optimal environment to support the healing process.

View Article and Find Full Text PDF

This study focused on the incorporation ofchloramphenicol (CAP)intowhey protein (WPI)(CAP-MPs) and was further formulated into a thermoresponsivein situgel for wound healing treatment.CAP microparticleswereproduced by two steps emulsification process.The modification ofthe mixing time and speed, as well as the variation of WPI and CAP concentration, resulted in various particle sizes(0.

View Article and Find Full Text PDF