Cardiovascular diseases (CVDs) are responsible for a large proportion of premature deaths in low- and middle-income countries. Early CVD detection and intervention is critical in these populations, yet many existing CVD risk scores require a physical examination or lab measurements, which can be challenging in such health systems due to limited accessibility. We investigated the potential to use photoplethysmography (PPG), a sensing technology available on most smartphones that can potentially enable large-scale screening at low cost, for CVD risk prediction.
View Article and Find Full Text PDFPurpose To evaluate the impact of an artificial intelligence (AI) assistant for lung cancer screening on multinational clinical workflows. Materials and Methods An AI assistant for lung cancer screening was evaluated on two retrospective randomized multireader multicase studies where 627 (141 cancer-positive cases) low-dose chest CT cases were each read twice (with and without AI assistance) by experienced thoracic radiologists (six U.S.
View Article and Find Full Text PDFBackground: alterations are associated with intracranial tumors in the pediatric population, including pineoblastoma, pituitary blastoma, and the recently described "primary -associated CNS sarcoma" (DCS). DCS is an extremely aggressive tumor with a distinct methylation signature and a high frequency of co-occurring mutations. However, little is known about its treatment approach and the genomic changes occurring after exposure to chemoradiotherapy.
View Article and Find Full Text PDFBackground: Epidermal growth factor receptor (EGFR) mutations (EGFRm) represent one of the most common genomic alterations identified among patients with non-small cell lung cancer (NSCLC). Several targeted agents for patients with EGFRm have been proven safe and effective, including the third-generation tyrosine kinase inhibitor (TKI) osimertinib. Nonetheless, some patients will present with or develop EGFR-TKI resistance mechanisms.
View Article and Find Full Text PDFFour new 2,4-distyrylquinolines and one 2-styryl-4-[2-(thiophen-2-yl)vinyl]quinoline have been synthesized using indium trichloride condensation reactions between aromatic aldehydes and the corresponding 2-methylquinolines, which were themselves prepared using Friedländer annulation reactions between mono- or diketones and (2-aminophenyl)chalcones: the products have all been fully characterized by spectroscopic and crystallographic methods. 2,4-Bis[(E)-styryl]quinoline, CHN, (IIa), and its dichloro analogue, 2-[(E)-2,4-dichlorostyryl]-4-[(E)-styryl]quinoline, CHClN, (IIb), exhibit different orientations of the 2-styryl unit relative to the quinoline nucleus. In each of the 3-benzoyl analogues {2-[(E)-4-bromostyryl]-4-[(E)-styryl]quinolin-3-yl}(phenyl)methanone, CHBrNO, (IIc), {2-[(E)-4-bromostyryl]-4-[(E)-4-chlorostyryl]quinolin-3-yl}(phenyl)methanone, CHBrClNO, (IId), and {2-[(E)-4-bromostyryl]-4-[(E)-2-(thiophen-2-yl)vinyl]quinolin-3-yl}(phenyl)methanone, CHBrNOS, (IIe), the orientation of the 2-styryl unit is similar to that in (IIa), but the orientation of the 4-arylvinyl units show considerable variation.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
November 2022
Three new 4-styrylquinoline-benzimidazole hybrids have been synthesized using a reaction sequence in which 2-methylquinoline precursors first undergo selective oxidation by selenium dioxide to form the corresponding 2-formylquinoline intermediates, followed by oxidative cyclocondensation reactions with benzene-1,2-diamine to yield the hybrid products. The formyl intermediates and the hybrid products have all been fully characterized using a combination of IR, H and C NMR spectroscopy, and high-resolution mass spectrometry, and the structures of the three hybrid products have been determined using single-crystal X-ray diffraction. Ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(4-chlorostyryl)quinoline-3-carboxylate, CHClNO, (IIIa), and ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(2-methoxystyryl)quinoline-3-carboxylate, CHNO, (IIIb), both crystallize in the solvent-free form with Z' = 1, but ethyl (E)-2-(1H-benzo[d]imidazol-2-yl)-4-(4-methylstyryl)quinoline-3-carboxylate, CHNO, (IIIc), crystallizes as a partial hexane solvate with Z' = 3, and the ester group in one of the independent molecules is disordered over two sets of atomic sites having occupancies of 0.
View Article and Find Full Text PDFOne of the main problems that countries are currently having is being able to measure the impact of the pandemic in other areas of society (for example, economic or social). In that sense, being able to combine variables about the behavior of COVID-19 with other variables in the environment, to build models about its impact, which help the decision-making of national authorities, is a current challenge. In this sense, this work proposes an approach that allows monitoring the socioeconomic behavior of the regions/departments of a country (in this case, Colombia) due to the effect of COVID-19.
View Article and Find Full Text PDFSeveral works have proposed predictive models of the SEIRD (Susceptible, Exposed, Infected, Recovered, and Dead) variables to characterize the pandemic of COVID-19. One of the challenges of these models is to be able to follow the dynamics of the disease to make more precise predictions. In this paper, we propose an approach based on incremental learning to build predictive models of the SEIRD variables for the COVID-19 pandemic.
View Article and Find Full Text PDFObjectives: Aortic coarctation is the most frequent structural anomaly out of congenital heart diseases. This congenital defect is an important cause of death worldwide. We sought to determine the prevalence of aortic coarctation in Colombia and whether new policies have had an impact on its diagnosis.
View Article and Find Full Text PDFThe SEIRD (Susceptible, Exposed, Infected, Recovered, and Dead) model is a mathematical model based on dynamic equations; widely used for characterization of the COVID-19 pandemic. In this paper, a different approach has been discussed, which is the development of predictive models for the SEIRD variables that have been based on the historical data collected, and the context variables to where this model has been applied to. Particularly, the context variables examined in this paper include total population, number of people over 65 years old, poverty index, morbidity rates, average age, and population density.
View Article and Find Full Text PDFCollective cell migration is a key feature of transition of ductal carcinoma in situ (DCIS) to invasive ductal carcinoma (IDC) among many other cancers, yet the microenvironmental factors and underlying mechanisms that trigger collective migration remain poorly understood. Here, we investigated two microenvironmental factors, tumor-intrinsic hypoxia and tumor-secreted factors (secretome), as triggers of collective migration using three-dimensional (3D) discrete-sized microtumor models that recapitulate hallmarks of DCIS-IDC transition. Interestingly, the two factors induced two distinct modes of collective migration: directional and radial migration in the 3D microtumors generated from the same breast cancer cell line model, T47D.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFWith an estimated 160,000 deaths in 2018, lung cancer is the most common cause of cancer death in the United States. Lung cancer screening using low-dose computed tomography has been shown to reduce mortality by 20-43% and is now included in US screening guidelines. Existing challenges include inter-grader variability and high false-positive and false-negative rates.
View Article and Find Full Text PDFTissue engineering has gained considerable attention in the development of small diameter tissue engineered vascular grafts (TEVGs) for treating coronary heart disease. A properly designed acellular and biodegradable TEVG must encourage the infiltration and growth of vascular smooth muscle cells (SMCs). Our group has previously shown that increasing levels of TGFβ2 can differentially modulate SMC migration and proliferation.
View Article and Find Full Text PDFCoronary artery bypass grafts used to treat coronary artery disease (CAD) often fail due to compliance mismatch. In this study, we have developed an experimental/computational approach to fabricate an acellular biomimetic hybrid tissue engineered vascular graft (TEVG) composed of alternating layers of electrospun porcine gelatin/polycaprolactone (PCL) and human tropoelastin/PCL blends with the goal of compliance-matching to rat abdominal aorta, while maintaining specific geometrical constraints. Polymeric blends at three different gelatin:PCL (G:PCL) and tropoelastin:PCL (T:PCL) ratios (80:20, 50:50, and 20:80) were mechanically characterized.
View Article and Find Full Text PDFTissue engineering has gained attention as an alternative approach for developing small diameter tissue-engineered vascular grafts intended for bypass surgery, as an option to treat coronary heart disease. To promote the formation of a healthy endothelial cell monolayer in the lumen of the graft, polycaprolactone/gelatin/fibrinogen scaffolds were developed, and the surface was modified using thermoforming and coating with collagen IV and fibronectin. Human cord blood-derived endothelial cells (hCB-ECs) were seeded onto the scaffolds and the important characteristics of a healthy endothelial cell layer were evaluated under static conditions using human umbilical vein endothelial cells as a control.
View Article and Find Full Text PDFIn this paper we present a wirelessly powered array of 128 centrifugo-pneumatic valves that can be thermally actuated on demand during spinning. The valves can either be triggered by a predefined protocol, wireless signal transmission via Bluetooth, or in response to a sensor monitoring a parameter like the temperature, or homogeneity of the dispersion. Upon activation of a resistive heater, a low-melting membrane (Parafilm™) is removed to vent an entrapped gas pocket, thus letting the incoming liquid wet an intermediate dissolvable film and thereby open the valve.
View Article and Find Full Text PDFObjective: To evaluate the efficacy and safety of IV laronidase for MPS I.
Methods: A systematic literature review was performed by searching the ClinicalTrials.gov, MEDLINE/PubMed, EMBASE, LILACS, and Cochrane Library databases, limited to clinical trials published until December 31, 2016.
Diversification of raw material for biofuel production is of interest to both academia and industry. One attractive substrate is a renewable lignocellulosic material such as oil palm () empty fruit bunch (OPEFB), which is a byproduct of the palm oil industry. This study aimed to characterize cellulases active against this substrate.
View Article and Find Full Text PDFAbdominal aortic aneurysm is a multifactorial disease that is a leading cause of death in developed countries. Matrix-metalloproteases (MMPs) are part of the disease process, however, assessing their role in disease initiation and progression has been difficult and animal models have become essential. Combining Förster resonance energy transfer (FRET) proteolytic beacons activated in the presence of MMPs with 2-photon microscopy allows for a novel method of evaluating MMP activity within the extracellular matrix (ECM).
View Article and Find Full Text PDFCardiovascular disease (CVD) is the leading cause of death for Americans. As coronary artery bypass graft surgery (CABG) remains a mainstay of therapy for CVD and native vein grafts are limited by issues of supply and lifespan, an effective readily available tissue-engineered vascular graft (TEVG) for use in CABG would provide drastic improvements in patient care. Biomechanical mismatch between vascular grafts and native vasculature has been shown to be the major cause of graft failure, and therefore, there is need for compliance-matched biocompatible TEVGs for clinical implantation.
View Article and Find Full Text PDFThe primate visual system achieves remarkable visual object recognition performance even in brief presentations, and under changes to object exemplar, geometric transformations, and background variation (a.k.a.
View Article and Find Full Text PDFA main goal of tissue engineering is the development of scaffolds that replace, restore and improve injured tissue. These scaffolds have to mimic natural tissue, constituted by an extracellular matrix (ECM) support, cells attached to the ECM, and signaling molecules such as growth factors that regulate cell function. In this study we created electrospun flat sheet scaffolds using different compositions of gelatin and fibrinogen.
View Article and Find Full Text PDF