Publications by authors named "Arda Mizrak"

A hallmark of neurodegenerative diseases (NDs) is the progressive loss of proteostasis, leading to the accumulation of misfolded proteins or protein aggregates, with subsequent cytotoxicity. To combat this toxicity, cells have evolved degradation pathways (ubiquitin-proteasome system and autophagy) that detect and degrade misfolded proteins. However, studying the underlying cellular pathways and mechanisms has remained a challenge, as formation of many types of protein aggregates is asynchronous, with individual cells displaying distinct kinetics, thereby hindering rigorous time-course studies.

View Article and Find Full Text PDF

A hallmark of neurodegenerative diseases is the progressive loss of proteostasis, leading to the accumulation of misfolded proteins or protein aggregates, with subsequent cytotoxicity. To combat this toxicity, cells have evolved degradation pathways (ubiquitin-proteasome system and autophagy) that detect and degrade misfolded proteins. However, studying the underlying cellular pathways and mechanisms has remained a challenge, as formation of many types of protein aggregates is asynchronous, with individual cells displaying distinct kinetics, thereby hindering rigorous time-course studies.

View Article and Find Full Text PDF

Pathways localizing proteins to their sites of action are essential for eukaryotic cell organization and function. Although mechanisms of protein targeting to many organelles have been defined, how proteins, such as metabolic enzymes, target from the endoplasmic reticulum (ER) to cellular lipid droplets (LDs) is poorly understood. Here we identify two distinct pathways for ER-to-LD protein targeting: early targeting at LD formation sites during formation, and late targeting to mature LDs after their formation.

View Article and Find Full Text PDF

Transient interactions between the anaphase-promoting complex/cyclosome (APC/C) and its activator subunit Cdc20 or Cdh1 generate oscillations in ubiquitylation activity necessary to maintain the order of cell cycle events. Activator binds the APC/C with high affinity and exhibits negligible dissociation kinetics in vitro, and it is not clear how the rapid turnover of APC/C-activator complexes is achieved in vivo. Here, we describe a mechanism that controls APC/C-activator interactions based on the availability of substrates.

View Article and Find Full Text PDF

The anaphase-promoting complex/cyclosome (APC/C) is a large, multisubunit ubiquitin ligase involved in regulation of cell division. APC/C substrate specificity arises from binding of short degron motifs in its substrates to transient activator subunits, Cdc20 and Cdh1. The destruction box (D-box) is the most common APC/C degron and plays a crucial role in substrate degradation by linking the activator to the Doc1/Apc10 subunit of core APC/C to stabilize the active holoenzyme and promote processive ubiquitylation.

View Article and Find Full Text PDF

Mitochondrial function depends crucially on the maintenance of multiple mitochondrial DNA (mtDNA) copies. Surprisingly, the cellular mechanisms regulating mtDNA copy number remain poorly understood. Through a systematic high-throughput approach in we determined mtDNA-to-nuclear DNA ratios in 5148 strains lacking nonessential genes.

View Article and Find Full Text PDF

Although polyubiquitin chains linked through all lysines of ubiquitin exist, specific functions are well-established only for lysine-48 and lysine-63 linkages in . To uncover pathways regulated by distinct linkages, genetic interactions between a gene deletion library and a panel of lysine-to-arginine ubiquitin mutants were systematically identified. The K11R mutant had strong genetic interactions with threonine biosynthetic genes.

View Article and Find Full Text PDF

Background: During cell-cycle progression, substrates of a single master regulatory enzyme can be modified in a specific order. Here, we used experimental and computational approaches to dissect the quantitative mechanisms underlying the ordered degradation of the substrates of the ubiquitin ligase APC/C(Cdc20), a key regulator of chromosome segregation in mitosis.

Results: We show experimentally that the rate of catalysis varies with different substrates of APC/C(Cdc20).

View Article and Find Full Text PDF

Despite intensive studies, the molecular mechanisms by which the genetic materials are uploaded into microvesicles (MVs) are still unknown. This is the first study describing a zipcode-like 25 nucleotide (nt) sequence in the 3'-untranslated region (3'UTR) of mRNAs, with variants of this sequence present in many mRNAs enriched in MVs, as compared to their glioblastoma cells of origin. When this sequence was incorporated into the 3'UTR of a reporter message and expressed in a different cell type, it led to enrichment of the reporter mRNA in MVs.

View Article and Find Full Text PDF

Micro RNAs (miRNA) negatively regulate protein-coding genes at the posttranscriptional level and are critical in tumorigenesis. Schwannomas develop from proliferation of dedifferentiated Schwann cells, which normally wrap nerve fibers to help support and insulate nerves. In this study, we carried out high-throughput miRNA expression profiling of human vestibular schwannomas by using an array representing 407 known miRNAs to explore the role of miRNAs in tumor growth.

View Article and Find Full Text PDF

Benign schwannomas are common tumors of the cranial and peripheral nerves, causing pain and loss of function. The development of effective therapy for these tumors has been hampered by the lack of relevant experimental in vivo models for convenient testing. Here, we describe a novel schwannoma model in which an immortalized human schwannoma cell line, HEI-193, established from an neurofibromatosis type 2 patient, has been stably transduced with fluorescent protein and luciferase reporters and implanted within the sciatic nerve of nude mice.

View Article and Find Full Text PDF