Osteoarthritis (OA) is a degenerative disease characterized by articular cartilage (AC) degradation that affects more than 30 million people in the USA. OA is managed with symptom-alleviating medications. Matrix-assisted autologous chondrocyte transplantation (MACT) is a tissue-engineered option, but current products are expensive and lack mechanical tunability or processability to match defect mechanical properties and anatomical shapes.
View Article and Find Full Text PDFIntroduction: The aim of this study was to investigate the ability of osteoarthritic human chondrocytes to produce articular cartilage (AC) tissues with a reduced inflammatory environment in response to 4 anti-inflammatory nutraceuticals: alpha-tocopherol (Alpha), gallic acid (G), ascorbic acid (AA), and catechin hydrate (C).
Methods: Chondrocytes isolated from patients who underwent total knee arthroplasty surgeries were divided into groups (9 male; mean age, 66.2 ± 3.
Anal Chim Acta
December 2018
Flexible electrochemical sensors for measurement and quantification of biomarkers are attracting a great deal of attention in non-invasive medical applications, due to their high mechanical compatibility and conformability with the human body. Realization of the full potential of such novel systems relies heavily on their effective manufacturing. Particularly, there is a need for manufacturing techniques that can realize complex designs, consisting of multiple functional materials which are required for sensor functionality.
View Article and Find Full Text PDFA method to produce soft and stretchable microelectronics composed of a liquid-phase Gallium-Indium alloy with micron-scale circuit features is introduced. Microchannels are molded onto the surface of a poly(dimethylsiloxane) (PDMS) elastomer and filled with EGaIn using a micro-transfer deposition step that exploits the unique wetting properties of EGaIn in air. The liquid-filled channels function as stretchable circuit wires or capacitor electrodes with a 2 μm linewidth and 1 μm spacing.
View Article and Find Full Text PDFPrediction and control of bone drilling forces are critical to the success of many orthopaedic operations. Uncontrolled and large forces can cause drill-bit breakage, drill breakthrough, excessive heat generation, and mechanical damage to the bone. This paper presents a mechanistic model for prediction of thrust forces and torques experienced during bone drilling.
View Article and Find Full Text PDFNanoscale Res Lett
June 2010
We present a rotating-tip-based mechanical nanomanufacturing technique, referred to here as nanomilling. An atomic force microscopy (AFM) probe tip that is rotated at high speeds by out-of-phase motions of the axes of a three-axis piezoelectric actuator is used as the nanotool. By circumventing the high-compliance AFM beam and directly attaching the tip onto the piezoelectric actuator, a high-stiffness arrangement is realized.
View Article and Find Full Text PDF