We present an efficient strategy for on-surface engineering of organic metal-free supramolecular complexes with long-term spin protection. By vacuum deposition of azafullerene (CN) monomers on a pre-deposited template layer of [10]cycloparaphenylene ([10]CPP) nanohoops on Au(111) surface we exploit the molecular shape matching between the CN and [10]CPP for the azafullerene encapsulation with nanohoops in a guest-host complexation geometry. CN⊂[10]CPP supramolecular complexes self-assemble into an extended two-dimensional hexagonal lattice yielding a high density network of stable spin-1/2 radicals.
View Article and Find Full Text PDFThe excipient selection process plays a crucial role in biopharmaceutical formulation development to ensure the long-term stability of the drug product. Though there are numerous options approved by regulatory authorities, only a subset is commonly utilized. Previous research has proposed various stabilization mechanisms, including protein-excipient interactions.
View Article and Find Full Text PDFDoping of quantum antiferromagnets is an established approach to investigate the robustness of their ground state against the competing phases. Predictions of doping effects on the ground state of the Shastry-Sutherland dimer model are here verified experimentally on Mg-doped SrCu(BO). A partial incorporation of Mg on the Cu site in the SrCu(BO) structure leads to a subtle but systematic lattice expansion with the increasing Mg-doping concentration, which is accompanied by a slight decrease in the spin gap, the Curie-Weiss temperature, and the peak temperature of the susceptibility.
View Article and Find Full Text PDFDynamical fluctuations of the elastic strain in strongly correlated systems are known to affect the onset of metal-to-insulator or superconducting transitions. Here we report their effect on the properties of a family of bandwidth-controlled alkali-intercalated fullerene superconductors. We introduce elastic strain through static local structural disorder in a systematic and controllable way in the fcc-structured K Cs C (with potassium content, 0.
View Article and Find Full Text PDFWe deposit azafullerene CN radicals in a vacuum on the Au(111) surface for layer thicknesses between 0.35 and 2.1 monolayers (ML).
View Article and Find Full Text PDFMolecular entities with robust spin-1/2 are natural two-level quantum systems for realizing qubits and are key ingredients of emerging quantum technologies such as quantum computing. Here we show that robust and abundant spin-1/2 species can be created in the solid state from spin-active azafullerene CN cages supramolecularly hosted in crystals of [10]cycloparaphenylene ([10]CPP) nanohoops. This is achieved a two-stage thermally-assisted homolysis of the parent diamagnetic [10]CPP⊃(CN)⊂[10]CPP supramolecular complex.
View Article and Find Full Text PDFThe corrosion inhibition property of selected small organic compounds was investigated using electrochemical measurements, including potentiodynamic polarization (PDP), linear polarization resistance (LPR), electrochemical impedance spectroscopy (EIS), and density functional theory (DFT) calculations. The inhibition efficiency ( %) of the inhibitor on mild steel (MS) in 1 M HCl was then determined. Results show that the presence of the inhibitors resulted in decreased corrosion current density ( ) values and increased polarization resistance ( ).
View Article and Find Full Text PDFThe products of the solid-state reactions between potassium metal and tetracene (K:Tetracene, 1:1, 1.5:1, and 2:1) are fully structurally characterized. Synchrotron X-ray powder diffraction shows that only KTetracene forms under the reaction conditions studied, with unreacted tetracene always present for < 2.
View Article and Find Full Text PDFA major handicap towards the exploitation of radicals is their inherent instability. In the paramagnetic azafullerenyl radical C N , the unpaired electron is strongly localized next to the nitrogen atom, which induces dimerization to diamagnetic bis(azafullerene), (C N) . Conventional stabilization by introducing steric hindrance around the radical is inapplicable here because of the concave fullerene geometry.
View Article and Find Full Text PDFProperties of mixed-metal MOFs depend on the distribution of different metals within their frameworks. Determination of this distribution is often very challenging. Using an example of aluminum- and iron-containing MIL-100, we demonstrate that Al NMR spectroscopy, when combined with first-principles calculations and magnetic, X-band electron paramagnetic resonance, Fe K-edge extended X-ray absorption fine structure, and Mössbauer measurements, enables one to accurately determine the arrangement of Al and Fe within the metal trimers, which are the basic building units of MIL-100.
View Article and Find Full Text PDFThe Verwey transition in FeO, a complex structural phase transition concomitant with a jump in electrical conductivity by two orders of magnitude, has been a benchmark for charge ordering (CO) phenomena in mixed-valence transition metal materials. CO is of central importance, because it frequently competes with functional properties such as superconductivity or metallic ferromagnetism. However, the CO state in FeO turned out to be complex, and the mechanism of the Verwey transition remains controversial.
View Article and Find Full Text PDFMolecular solids with cooperative electronic properties based purely on π electrons from carbon atoms offer a fertile ground in the search for exotic states of matter, including unconventional superconductivity and quantum magnetism. The field was ignited by reports of high-temperature superconductivity in materials obtained by the reaction of alkali metals with polyaromatic hydrocarbons, such as phenanthrene and picene, but the composition and structure of any compound in this family remained unknown. Here we isolate the binary caesium salts of phenanthrene, Cs(CH) and Cs(CH), to show that they are multiorbital strongly correlated Mott insulators.
View Article and Find Full Text PDFWe explore the thermodynamic properties of the layered copper(II) carbodiimide CuNCN by heat-capacity measurements and investigate the corresponding thermal atomic motions by means of neutron powder diffraction as well as inelastic neutron scattering. The experiments are complemented by a combination of density-functional calculations, phonon analysis and analytic theory. The existence of a soft flexural mode-bending of the layers, characteristic for the material structure-is established in the phonon spectrum of CuNCN by giving characteristic temperature-dependent contributions to the heat capacity and atomic displacement parameters.
View Article and Find Full Text PDFWe report a systematic nuclear magnetic resonance investigation of the (23)Na spin-lattice relaxation rate, 1/T1, in sodium loaded low-silica X (LSX) zeolite, Nan/Na12-LSX, for various loading levels of sodium atoms n across the metal-to-insulator crossover. For high loading levels of n ≥ 14.2, 1/T1T shows nearly temperature-independent behaviour between 10 K and 25 K consistent with the Korringa relaxation mechanism and the metallic ground state.
View Article and Find Full Text PDFUnderstanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above T c is a major challenge for all unconventional superconductors. The molecular A3C60 fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C60 (3-) electronic structure controls the geometry and spin state of the structural building unit via the on-molecule Jahn-Teller effect. We identify the Jahn-Teller metal as a fluctuating microscopically heterogeneous coexistence of both localized Jahn-Teller-active and itinerant electrons that connects the insulating and superconducting states of fullerides.
View Article and Find Full Text PDFIn recent years, conversion chemical reactions, which are driven by ion diffusion, emerged as an important concept for formation of nanoparticles. Here we demonstrate that the slow anion diffusion in anion exchange reactions can be efficiently used to tune the disorder strength and the related electronic properties of nanoparticles. This paradigm is applied to high-temperature formation of titanium oxynitride nanoribbons, Ti(O,N), transformed from hydrogen titanate nanoribbons in an ammonia atmosphere.
View Article and Find Full Text PDFThe magnetic response of antiferromagnetic CsO2, coming from the p-orbital S=1/2 spins of anionic O2(-) molecules, is followed by 133Cs nuclear magnetic resonance across the structural phase transition occurring at T(s1)=61 K on cooling. Above T(s1), where spins form a square magnetic lattice, we observe a huge, nonmonotonic temperature dependence of the exchange coupling originating from thermal librations of O2(-) molecules. Below T(s1), where antiferromagnetic spin chains are formed as a result of p-orbital ordering, we observe a spin Tomonaga-Luttinger-liquid behavior of spin dynamics.
View Article and Find Full Text PDFMotifs of periodic modulations are encountered in a variety of natural systems, where at least two rival states are present. In strongly correlated electron systems, such behaviour has typically been associated with competition between short- and long-range interactions, for example, between exchange and dipole-dipole interactions in the case of ferromagnetic thin films. Here we show that spin-stripe textures may develop also in antiferromagnets, where long-range dipole-dipole magnetic interactions are absent.
View Article and Find Full Text PDFInhomogeneity in the ground state is an intriguing, emergent phenomenon in magnetism. Recently, it has been observed in the magnetostructural channel of the geometrically frustrated α-NaMnO2, for the first time in the absence of active charge degrees of freedom. Here we report an in-depth numerical and local-probe experimental study of the isostructural sister compound CuMnO2 that emphasizes and provides an explanation for the crucial differences between the two systems.
View Article and Find Full Text PDFThe alkali fullerides, A(3)C(60) (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.
View Article and Find Full Text PDFPhase inhomogeneity of otherwise chemically homogenous electronic systems is an essential ingredient leading to fascinating functional properties, such as high-Tc superconductivity in cuprates, colossal magnetoresistance in manganites and giant electrostriction in relaxors. In these materials distinct phases compete and can coexist owing to intertwined ordered parameters. Charge degrees of freedom play a fundamental role, although phase-separated ground states have been envisioned theoretically also for pure spin systems with geometrical frustration that serves as a source of phase competition.
View Article and Find Full Text PDFAn incommensurate elliptical helical magnetic structure in the frustrated coupled-spin-chain system FeTe(2)O(5)Br is surprisingly found to persist down to 53(3) mK (T/T(N)~1/200), according to neutron scattering and muon spin relaxation. In this state, finite spin fluctuations at T→0 are evidenced by muon depolarization, which is in agreement with specific-heat data indicating the presence of both gapless and gapped excitations. We thus show that the amplitude-modulated magnetic order intrinsically accommodates contradictory persistent spin dynamics and long-range order and can serve as a model structure to investigate their coexistence.
View Article and Find Full Text PDFWe have investigated the magnetic properties of CuNCN, the first nitrogen-based analog of cupric oxide CuO. Our muon-spin relaxation, nuclear magnetic resonance, and electron-spin resonance studies reveal that classical magnetic ordering is absent down to the lowest temperatures. However, a large enhancement of spin correlations and an unexpected inhomogeneous magnetism have been observed below 80 K.
View Article and Find Full Text PDF