Publications by authors named "Arciello A"

In this work, we present the case of the G-quadruplex(G4)-forming aptamers we recently identified for the recognition of HMGB1, protein involved in inflammation, autoimmune diseases and cancer. These aptamers were previously analyzed, without annealing them, after proper dilution of the stock solution in a pseudo-physiological buffer mimicking the extracellular environment where the protein exerts its pathological activity, and showed high thermal stability and nuclease resistance, good protein affinity and remarkable in vitro activity. These features were more marked for the aptamers forming dimeric, parallel G4 structures in solution.

View Article and Find Full Text PDF

Several scientific evidences report that a central role in the pathogenesis of Alzheimer's disease is played by the deposition of insoluble aggregates of β-amyloid proteins in the brain. Because Aβ is self-assembling, one possible design strategy is to inhibit the aggregation of Aβ peptides using short peptide fragments homologous to the full-length wild-type Aβ protein. In the past years, several studies have reported on the synthesis of some short synthetic peptides called β-sheet breaker peptides (BSBPs).

View Article and Find Full Text PDF

The discovery of plant-derived compounds that are able to combat antibiotic-resistant pathogens is an urgent demand. Over years, attracted considerable attention because of its beneficial medical properties. Phytochemical analyses revealed that plant species contain several metabolites, such as sesquiterpene lactones (STLs), essential oils, flavonoids, alkaloids, and lignans.

View Article and Find Full Text PDF

Human angiogenin (hANG) is the most studied stress-induced ribonuclease (RNase). In physiological conditions it performs its main functions in nucleoli, promoting cell proliferation by rDNA transcription, whereas it is strongly limited by its inhibitor (RNH1) throughout the rest of the cell. In stressed cells hANG dissociates from RNH1 and thickens in the cytoplasm where it manages the translational arrest and the recruitment of stress granules, thanks to its propensity to cleave tRNAs and to induce the release of active halves.

View Article and Find Full Text PDF

Hypothesis: Implementation of tissue adhesives from natural sources endowed with good mechanical properties and underwater resistance still represents a challenging research goal. Inspired by the extraordinary wet adhesion properties of mussel byssus proteins resulting from interaction of catechol and amino residues, hydrogels from soy protein isolate (SPI) and selected polyphenols i.e.

View Article and Find Full Text PDF

In-depth studies on the interaction of natural compounds with cancer-related G-quadruplex structures have been undertaken only recently, despite their high potential as anticancer agents, especially due to their well-known and various bioactivities. In this frame, aiming at expanding the repertoire of natural compounds able to selectively recognize G-quadruplexes, and particularly focusing on phenanthrenoids, a mini-library including dimeric (-) and glucoside (-) analogues of 9,10-dihydrophenanthrenes, a related tetrahydropyrene glucoside () along with 9,10-dihydrophenanthrene were investigated here by several biophysical techniques and molecular docking. Compounds and emerged as the most selective G-quadruplex ligands within the investigated series.

View Article and Find Full Text PDF

Among modern biomaterials, hybrid tools containing an organic component and a metal cation are recognized as added value, and, for many advanced biomedical applications, synthetic polymers are used as thin protective/functional coatings for medical or prosthetic devices and implants. These materials require specific non-degradability, biocompatibility, antimicrobial, and antiproliferative properties to address safety aspects concerning their use in medicine. Moreover, bioimaging monitoring of the biomedical device and/or implant through biological tissues is a desirable ability.

View Article and Find Full Text PDF

Plants are considered a wealthy resource of novel natural drugs effective in the treatment of multidrug-resistant infections. Here, a bioguided purification of extracts was performed to identify bioactive compounds. The determination of antimicrobial properties was achieved by broth microdilution assays to evaluate minimal inhibitory concentration (MIC) values and by crystal violet staining and confocal laser scanning microscopy analyses (CLSM) to investigate the antibiofilm capacity of the isolated compounds.

View Article and Find Full Text PDF

To develop efficient anticancer theranostic systems, we studied the interaction between a cyanine dye, analogue of thiazole orange (named CyOH), and two G-quadruplex-forming aptamers, V7t1 and 3R02, recognizing the Vascular Endothelial Growth Factor 165 (VEGF) - an angiogenic protein overexpressed in cancer cells, responsible for the rapid growth and metastases of solid tumours. We demonstrated, by exploiting different biophysical techniques - i.e.

View Article and Find Full Text PDF

Human angiogenin (ANG) is a 14-kDa ribonuclease involved in different pathophysiological processes including tumorigenesis, neuroprotection, inflammation, innate immunity, reproduction, the regeneration of damaged tissues and stress cell response, depending on its intracellular localization. Under physiological conditions, ANG moves to the cell nucleus where it enhances rRNA transcription; conversely, recent reports indicate that under stress conditions, ANG accumulates in the cytoplasmic compartment and modulates the production of tiRNAs, a novel class of small RNAs that contribute to the translational inhibition and recruitment of stress granules (SGs). To date, there is still limited and controversial experimental evidence relating to a hypothetical role of ANG in the epidermis, the outermost layer of human skin, which is continually exposed to external stressors.

View Article and Find Full Text PDF

Nowadays a possible strategy in food preservation consists of the use of active and functional packaging to improve safety and ensure a longer shelf life of food products. Many studies refer to chitosan-based films because of the already-known chitosan (CH) antibacterial and antifungal activity. In this work, we developed CH-based films containing Dried Olive Leaf Extract (DOLE) obtained by Naviglio extractor, with the aim to investigate the polyphenols yield and the antioxidant activity of this extract entrapped in CH-based-edible films.

View Article and Find Full Text PDF

Catheter-associated infections in bladder cancer patients, following radical cystectomy or ureterocutaneostomy, are very frequent, and the development of antibiotic resistance poses great challenges for treating biofilm-based infections. Here, we characterized bacterial communities from catheters of patients who had undergone radical cystectomy for muscle-invasive bladder cancer. We evaluated the efficacy of conventional antibiotics, alone or combined with the human ApoB-derived antimicrobial peptide r(P)ApoB, to treat ureteral catheter-colonizing bacterial communities on clinically isolated bacteria.

View Article and Find Full Text PDF

Topical antimicrobial treatments are often ineffective on recalcitrant and resistant skin infections. This necessitates the design of antimicrobials that are less susceptible to resistance mechanisms, as well as the development of appropriate delivery systems. These two issues represent a great challenge for researchers in pharmaceutical and drug discovery fields.

View Article and Find Full Text PDF

Background: medical device-induced infections affect millions of lives worldwide and innovative preventive strategies are urgently required. Antimicrobial peptides (AMPs) appear as ideal candidates to efficiently functionalize medical devices surfaces and prevent bacterial infections. In this scenario, here, we produced antimicrobial polydimethylsiloxane (PDMS) by loading this polymer with an antimicrobial peptide identified in human apolipoprotein B, r(P)ApoB.

View Article and Find Full Text PDF

Therapeutic solutions to counter complex (Bcc) bacteria are challenging due to their intrinsically high level of antibiotic resistance. Bcc organisms display a variety of potential virulence factors, have a distinct lipopolysaccharide naturally implicated in antimicrobial resistance. and are able to form biofilms, which may further protect them from both host defence peptides (HDPs) and antibiotics.

View Article and Find Full Text PDF

Encrypted peptides have been recently found in the human proteome and represent a potential class of antibiotics. Here we report three peptides derived from the human apolipoprotein B (residues 887-922) that exhibited potent antimicrobial activity against drug-resistant , , and both and in an animal model. The peptides had excellent cytotoxicity profiles, targeted bacteria by depolarizing and permeabilizing their cytoplasmic membrane, inhibited biofilms, and displayed anti-inflammatory properties.

View Article and Find Full Text PDF

Environment-sensitive fluorophores are very valuable tools in the study of molecular and cellular processes. When used to label proteins and peptides, they allow for the monitoring of even small variations in the local microenvironment, thus acting as reporters of conformational variations and binding events. Luciferin and aminoluciferin, well known substrates of firefly luciferase, are environment-sensitive fluorophores with unusual and still-unexploited properties.

View Article and Find Full Text PDF

Therapeutic treatments with have a long-established tradition in various diseases due to its antibacterial, antioxidant, antiviral, anti-malaria and anti-cancer effects. However, in relation to the latter, virtually all reports focused on toxic effects of extracts were obtained mostly through conventional maceration methods. In the present study, an innovative extraction procedure from , based on pressurised cyclic solid-liquid (PCSL) extraction, resulted in the production of a new phytocomplex with enhanced anti-cancer properties.

View Article and Find Full Text PDF

G-quadruplex existence was proved in cells by using both antibodies and small molecule fluorescent probes. However, the G-quadruplex probes designed thus far are structure- but not conformation-specific. Recently, a core-extended naphthalene diimide () was designed and found to provide fluorescent signals of markedly different intensities when bound to G-quadruplexes of different conformations or duplexes.

View Article and Find Full Text PDF

Rationale: Inflammation is a cascade of events mediated by a cytokine network triggering the cellular response. In order to monitor the modulation of the crucial inflammatory proteins, e.g.

View Article and Find Full Text PDF

Host defense peptides (HDPs) are gaining increasing interest, since they are endowed with multiple activities, are often effective on multidrug resistant bacteria and do not generally lead to the development of resistance phenotypes. Cryptic HDPs have been recently identified in human apolipoprotein B and found to be endowed with a broad-spectrum antimicrobial activity, with anti-biofilm, wound healing and immunomodulatory properties, and with the ability to synergistically act in combination with conventional antibiotics, while being not toxic for eukaryotic cells. Here, a multidisciplinary approach was used, including time killing curves, differential scanning calorimetry, circular dichroism, ThT binding assays, and transmission electron microscopy analyses.

View Article and Find Full Text PDF

The effectiveness of three novel "host defence peptides" identified in human Apolipoprotein B (ApoB) as novel antimicrobial and antibiofilm agents to be employed in food industry is reported. ApoB-derived peptides have been found to exert significant antimicrobial effects towards Salmonella typhimurium ATCC® 14028 and Salmonella enteritidis 706 RIVM strains. Furthermore, they have been found to retain antimicrobial activity under experimental conditions selected to simulate those occurring during food storage, transportation and heat treatment, and have been found to be endowed with antibiofilm properties.

View Article and Find Full Text PDF

Ageritin is the prototype of a new ribotoxin-like protein family, which has been recently identified also in basidiomycetes. The protein exhibits specific RNase activity through the cleavage of a single phosphodiester bond located at sarcin/ricin loop of the large rRNA, thus inhibiting protein biosynthesis at early stages. Conversely to other ribotoxins, its activity requires the presence of divalent cations.

View Article and Find Full Text PDF

Therapeutic options to treat invasive fungal infections are still limited. This makes the development of novel antifungal agents highly desirable. Naturally occurring antifungal peptides represent valid candidates, since they are not harmful for human cells and are endowed with a wide range of activities and their mechanism of action is different from that of conventional antifungal drugs.

View Article and Find Full Text PDF

Background Microbial transglutaminase (mTG) has been successfully used to produce site-specific protein conjugates derivatized at the level of Gln and/or Lys residues for different biotechnological applications. Here, a recombinant peptide identified in human apolipoprotein B sequence, named r(P)ApoB and endowed with antimicrobial activity, was studied as a possible acyl acceptor substrate of mTG with at least one of the six Lys residues present in its sequence. Methods The enzymatic crosslinking reaction was performed in vitro using N,N-dimethylcasein, substance P and bitter vetch (Vicia ervilia) seed proteins, well known acyl donor substrates in mTG-catalyzed reactions.

View Article and Find Full Text PDF