Red teaming, the practice of adversarially exposing unexpected or undesired model behaviors, is critical towards improving equity and accuracy of large language models, but non-model creator-affiliated red teaming is scant in healthcare. We convened teams of clinicians, medical and engineering students, and technical professionals (80 participants total) to stress-test models with real-world clinical cases and categorize inappropriate responses along axes of safety, privacy, hallucinations/accuracy, and bias. Six medically-trained reviewers re-analyzed prompt-response pairs and added qualitative annotations.
View Article and Find Full Text PDFBackground: With an increasing interest in using large claims databases in medical practice and research, it is a meaningful and essential step to efficiently identify patients with the disease of interest.
Objectives: This study aims to establish a machine learning (ML) approach to identify patients with congenital heart disease (CHD) in large claims databases.
Methods: We harnessed data from the Quebec claims and hospitalization databases from 1983 to 2000.
Cox models with time-dependent coefficients and covariates are widely used in survival analysis. In high-dimensional settings, sparse regularization techniques are employed for variable selection, but existing methods for time-dependent Cox models lack flexibility in enforcing specific sparsity patterns (ie, covariate structures). We propose a flexible framework for variable selection in time-dependent Cox models, accommodating complex selection rules.
View Article and Find Full Text PDFSurvival models can help medical practitioners to evaluate the prognostic importance of clinical variables to patient outcomes such as mortality or hospital readmission and subsequently design personalized treatment regimes. Electronic Health Records (EHRs) hold the promise for large-scale survival analysis based on systematically recorded clinical features for each patient. However, existing survival models either do not scale to high dimensional and multi-modal EHR data or are difficult to interpret.
View Article and Find Full Text PDFDespite growing interest in estimating individualized treatment rules, little attention has been given the binary outcome setting. Estimation is challenging with nonlinear link functions, especially when variable selection is needed. We use a new computational approach to solve a recently proposed doubly robust regularized estimating equation to accomplish this difficult task in a case study of depression treatment.
View Article and Find Full Text PDFIntroduction: Kidney transplantation is the optimal treatment in end-stage kidney disease, but donor specific antibody development continues to negatively impact patients undergoing kidney transplantation. One of the recent advances in solid organ transplantation has been the definition of molecular mismatching between donors and recipients' Human Leukocyte Antigens (HLA). While not fully integrated in standard clinical care, cumulative molecular mismatch at the level of eplets (EMM) as well as the PIRCHE-II score have shown promise in predicting transplant outcomes.
View Article and Find Full Text PDF