Idiopathic pulmonary fibrosis (IPF) is a fatal disease defined by a progressive decline in lung function due to scarring and accumulation of extracellular matrix (ECM) proteins. The SOCS (Suppressor Of Cytokine Signaling) domain is a 40 amino acid conserved domain known to form a functional ubiquitin ligase complex targeting the Von Hippel Lindau (VHL) protein for proteasomal degradation. Here we show that the SOCS conserved domain operates as a molecular tool, to disrupt collagen and fibronectin fibrils in the ECM associated with fibrotic lung myofibroblasts.
View Article and Find Full Text PDFNatural killer (NK) cells are cytotoxic innate lymphocytes that are specialized to kill tumor cells. NK cells are responsive to the primary cytokine IL-2 in the tumor microenvironment (TME), to activate its effector functions against tumors. Despite their inherent ability to kill tumor cells, dysfunctional NK cells observed within advanced solid tumors are associated with poor patient survival.
View Article and Find Full Text PDFFibronectin (FN) is an extracellular matrix (ECM) glycoprotein that self-assembles into FN fibrils, forming a FN matrix contributing to the stiffness of the ECM. Stromal FN stiffness in cancer has been shown to impact epithelial functions such as migration, cancer metastasis, and epithelial-to-mesenchymal transition. The role of the FN matrix of epithelial cells in driving such processes remains less well understood and is the focus of this study.
View Article and Find Full Text PDFFibronectin (FN) is a core matrix protein that assembles to form a dynamic cellular scaffold, frequently perturbed during oncogenic transformation. Tumor hypoxia, characterized by low oxygen concentrations in the microenvironment of most solid tumors has been shown to accelerate FN assembly in fibroblasts and cancer-associated fibroblasts, cell types that produce abundant amounts of FN protein. Nevertheless, FN matrix regulation in epithelial cancer cells during hypoxia remains less well defined.
View Article and Find Full Text PDFFibronectin (FN) is an extracellular matrix protein that is secreted by many cell types and binds predominantly to the cell surface receptor Integrin α5β1. Integrin α5β1 binding initiates the step-wise assembly of FN into fibrils, a process called fibrillogenesis. We and several others have demonstrated critical effects of fibrillogenesis on cell migration and metastasis.
View Article and Find Full Text PDFFibronectin (FN) is a critical regulator of extracellular matrix (ECM) remodeling through its availability and stepwise polymerization for fibrillogenesis. Availability of FN is regulated by its synthesis and turnover, and fibrillogenesis is a multistep, integrin-dependent process essential for cell migration, proliferation, and tissue function. Transforming growth factor β (TGF-β) is an established regulator of ECM remodeling via transcriptional control of ECM proteins.
View Article and Find Full Text PDFHyperactive Wnt/β-catenin signaling is linked to cancer progression and developmental abnormalities, making identification of mechanisms controlling Wnt/β-catenin signaling vital. Transforming growth factor β type III receptor (TβRIII/betaglycan) is a transmembrane proteoglycan co-receptor that exists with or without heparan and/or chondroitin sulfate glycosaminoglycan (GAG) modifications in cells and has established roles in development and cancer. Our studies here demonstrate that TβRIII, independent of its TGFβ co-receptor function, regulates canonical Wnt3a signaling by controlling Wnt3a availability through its sulfated GAG chains.
View Article and Find Full Text PDFAnoikis, a cell death mechanism triggered upon cell-matrix detachment, is regarded as a physiological suppressor of metastasis that can be regulated by a diverse array of signals. The protein encoded by GDF2 is BMP9 and is a member of the bone morphogenetic protein family and the transforming growth factor (TGF) β superfamily with emerging yet controversial roles in carcinogenesis. In an attempt to identify the function of growth and differentiation factor 2 (GDF2) in epithelial systems, we examined the signaling machinery that is involved and cell fate decisions in response to GDF2 in ovarian and breast epithelia.
View Article and Find Full Text PDFViruses alter specific host cell targets to counteract possible defense mechanisms aimed at eliminating infectivity and viral propagation. The SUMO conjugating enzyme Ubc9 functions as a hub for protein sumoylation, whilst also providing an interactive surface for sumoylated proteins through noncovalent interactions. The targeting of Ubc9 by viruses and viral proteins is thus highly beneficial for the disruption of both protein modification and protein-protein interaction mechanisms with which proteins increase their functional repertoire in cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2013
The tumor suppressor VHL (von Hippel-Lindau) protein is a substrate receptor for Ubiquitin Cullin Ring Ligase complexes (CRLs), containing a BC-box domain that associates to the adaptor Elongin B/C. VHL targets hypoxia-inducible factor 1α to proteasome-dependent degradation. Gam1 is an adenoviral protein, which also possesses a BC-box domain that interacts with the host Elongin B/C, thereby acting as a viral substrate receptor.
View Article and Find Full Text PDFA single-step protein affinity purification protocol using Aspergillus nidulans is described. Detailed protocols for cell breakage, affinity purification, and depending on the application, methods for protein release from affinity beads are provided. Examples defining the utility of the approaches, which should be widely applicable, are included.
View Article and Find Full Text PDFThe Aspergillus nidulans NIMA kinase is essential for mitosis and is the founding member of the conserved NIMA-related kinase (Nek) family of protein kinases. To gain insight into NIMA function, a copy number suppression screen has been completed that defines three proteins termed MCNA, MCNB, and MCNC (multi-copy-number suppressor of nimA1 A, B, and C). All display a distinctive and dynamic cell cycle-specific distribution.
View Article and Find Full Text PDFIntranuclear inclusion bodies (IBs) are the histopathologic markers of multiple protein folding diseases. IB formation has been extensively studied using fluorescent fusion products of pathogenic polyglutamine (polyQ) expressing proteins. These studies have been informative in determining the cellular targets of expanded polyQ protein as well as the methods by which cells rid themselves of IBs.
View Article and Find Full Text PDFThe polyglutamine diseases are characterized by expansion of triplet CAG repeats that encode polyglutamine tracts in otherwise unrelated proteins. One plausible explanation for the neurodegeneration of these disorders proposes that inclusions of such proteins sequester other significant nuclear proteins in inactive form. The present study shows that PML protein is sequestered by inclusions of the pathogenic mutant form of the polyglutamine protein ataxin-1 and that this sequestration removes from the nucleus the free 0.
View Article and Find Full Text PDFThe mechanism of the antiulcer effect of omeprazole was studied placing emphasis on its role to block oxidative damage and apoptosis during ulceration. Dose-response studies on gastroprotection in stress and indomethacin-induced ulcer and inhibition of pylorus ligation-induced acid secretion indicate that omeprazole significantly blocks gastric lesions at lower dose (2.5 mg/kg) without inhibiting acid secretion, suggesting an independent mechanism for its antiulcer effect.
View Article and Find Full Text PDF