Publications by authors named "Archana Laknaur"

Objective: To investigate the link between EZH2 and Wnt/β-catenin signaling and its role in uterine fibroids (UFs) pathogenesis and explore the potential effect of natural compound methyl jasmonate (MJ) against UFs.

Design: EZH2 overexpression or inhibition was achieved in human uterine leiomyoma (HuLM) cells using EZH2-expressing adenovirus or chemical EZH2 inhibitor (DZNep), respectively. The HuLM and normal uterine smooth muscle cells were treated with 0.

View Article and Find Full Text PDF

Leiomyosarcoma is the most frequent subtype of the deadly uterine sarcoma and shares many common clinical grounds with leiomyoma, which is in turn the most common solid benign uterine neoplasm. With the recent progress in minimally invasive techniques for managing leiomyomas, accurate preoperative diagnosis of uterine masses has become the most important selection criterion for the safest therapeutic option. Therefore, different imaging modalities would be playing a key role in management of uterine masses.

View Article and Find Full Text PDF

Background: Uterine Fibroids (UFs) growth is ovarian steroid-dependent. Previous studies have shown that estrogen and progesterone play an important role in UF development. However, the mechanism underlying progesterone induced UF pathogenesis is largely unknown.

View Article and Find Full Text PDF

Cancer cells undergo metabolic adaptation to sustain uncontrolled proliferation. Aerobic glycolysis and glutaminolysis are two of the most essential characteristics of cancer metabolic reprogramming. Hyperactivated phosphoinositide 3-kinase (PI3K)/Akt serine/threonine kinase (Akt) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling pathways play central roles in cancer cell metabolic adaptation given that their downstream effectors, such as Akt and c-Myc, control most of the glycolytic and glutaminolysis genes.

View Article and Find Full Text PDF

Uterine fibroids (UF) are the most common pelvic tumors in women of reproductive-age and they usually cause heavy menstrual bleeding, pain and infertility. Autophagy is a collection of processes that enables the cells to digest and recycle their cytoplasmic contents, such as toxic protein aggregates, defunct or disused organelles and invading microorganisms. Dysregulation in autophagy process were described in neoplasms; however, the contribution of autophagy to the pathogenesis of UF remains unknown.

View Article and Find Full Text PDF

Uterine fibroids, or leiomyoma, are the most common benign tumors in women of reproductive age. In this work, the effect of silencing the mediator complex subunit 12 (Med12) gene in human uterine fibroid cells was evaluated. The role of Med12 in the modulation of Wnt/β-catenin and cell proliferation-associated signaling was evaluated in human uterine fibroid cells.

View Article and Find Full Text PDF

Uterine fibroids (UFs) are benign smooth muscle neoplasms affecting up to 70% of reproductive age women. Treatment of symptomatic UFs places a significant economic burden on the US health-care system. Several specific genetic abnormalities have been described as etiologic factors of UFs, suggesting that a low DNA damage repair capacity may be involved in the formation of UF.

View Article and Find Full Text PDF

Objective: To study whether efficient transduction and subsequent elimination of fibroid tumor-initiating stem cells during debulking of tumor cells will aid in completely eradicating the tumor as well as decreasing the likelihood of recurrence.

Design: Case control study.

Setting: Research laboratory.

View Article and Find Full Text PDF

Uterine fibroids are benign, smooth muscle tumors that occur in approximately 70%-80% of women by age 50 yr. The cellular and molecular mechanism(s) by which uterine fibroids (UFs) develop are not fully understood. Accumulating evidence demonstrates that several genetic abnormalities, including deletions, rearrangements, translocations, as well as mutations, have been found in UFs.

View Article and Find Full Text PDF

Etiology of preterm birth (PTB) is multifactorial; therefore, decreasing the incidence of PTB is a major challenge in the field of obstetrics. Epidemiological studies have reported an association between toxicants and PTB. However, there are no studies on the role of benzo[a]pyrene (BaP), an environmental toxicant, in the incidence of PTB.

View Article and Find Full Text PDF

Objective: To identify and characterize myometrial/fibroid stem cells by specific stem cell markers in human myometrium, and to better understand the stem cell contribution in the development of uterine fibroids.

Design: Prospective, experimental human and animal study.

Setting: University research laboratory.

View Article and Find Full Text PDF

Although somatic mutations in exon 2 of the mediator complex subunit 12 (MED12) gene have been reported previously in uterine fibroids in women from Finland, South Africa, and North America, the status of these mutations was not reported in the Southern United States women. The aim of this study is to determine the MED12 somatic mutations in uterine fibroids of women from Southern Unites States, which will help to better understand the contribution of MED12 mutations in fibroid tumor biology. Herein, we determined the frequency of MED12 gene exon 2 somatic mutations in 143 fibroid tumors from a total of 135 women from the Southern United States and in 50 samples of the adjacent myometrium using PCR amplification and Sanger sequencing.

View Article and Find Full Text PDF

Objective: Infection triggers inflammation that, in turn, enhances the expression of contractile-associated factors in myometrium and increases the risk of preterm delivery. In this study, we assessed vitamin D regulation of inflammatory markers, contractile-associated factors, steroid hormone receptors, and NFκB pathway proteins in human uterine myometrial smooth muscle (UtSM) cells that were cultured in an inflammatory environment.

Study Design: Inflammatory environment was simulated for UtSM cells by coculturing them with monocyte lineage (THP1) cells.

View Article and Find Full Text PDF