Atypical sensory reactivities are pervasive among people with autism spectrum disorder (ASD). With respect to olfaction, most previous studies have used psychophysical or questionnaire-based methodologies; thus, the neural basis of olfactory processing in ASD remains unclear. This study aimed to determine the stages of olfactory processing that are altered in ASD.
View Article and Find Full Text PDFThe capacity to pay attention is important for the cognitive ability, for example, evaluating an object for its qualities. Attention can selectively prioritize the neural processes that are relevant to a given task. Neuroimaging investigations on human attention are primarily focused on vision to the exclusion of other sensory systems, particularly olfaction.
View Article and Find Full Text PDFTo study multistep tumorigenesis process, there is a need of in-vitro 3D model simulating in-vivo tissue. Present study aimed to reconstitute in-vitro tissue models comprising various stages of neoplastic progression of tongue tumorigenesis and to evaluate the utility of these models to investigate the role of stromal fibroblasts in maintenance of desmosomal anchoring junctions using transmission electron microscopy. We reconstituted in-vitro models representing normal, dysplastic, and malignant tissues by seeding primary keratinocytes on either fibroblast embedded in collagen matrix or plain collagen matrix in growth factor-free medium.
View Article and Find Full Text PDFObjective: In the present study, we have investigated the prognostic value of known stem cell-associated molecules such as Oct4, CD44 and c-Myc in patients with oral SCC who had received post-surgery radio- and/or chemotherapy.
Materials And Methods: Immunohistochemistry was performed to analyse the expression of Oct4, CD44 and c-Myc in 87 tumour tissues, and the expression profile obtained was correlated with clinicopathological parameters of the patients with oral cancer. Tumourigenic potential of these molecules was also evaluated by in vivo studies.
There is growing interest in understanding how the brain utilizes synchronized oscillatory activity to integrate information across functionally connected regions. Computing phase-locking values (PLV) between EEG signals is a popular method for quantifying such synchronizations and elucidating their role in cognitive tasks. However, high-dimensionality in PLV data incurs a serious multiple testing problem.
View Article and Find Full Text PDFComputing phase-locking values between EEG signals is a popular method for quantifying functional connectivity. However, this method involves large-scale, high-resolution datasets, which impose a serious multiple testing problem. Standard multiple testing methods fail to exploit the information from the complex dependence structure that varies across hypotheses in spectral, temporal, and spatial dimensions and result in a severe loss of power.
View Article and Find Full Text PDFThe neural basis of memory subprocesses, encoding and retrieval, have been extensively examined in functional neuroimaging studies. However, the cortical substrates of taste memory, which form an important part of our episodic memory, have rarely been explored in humans. Previously, we have used functional near-infrared spectroscopy (fNIRS) and found activation of the lateral prefrontal cortex (LPFC) related to taste encoding.
View Article and Find Full Text PDFComputing phase-locking values (PLVs) between EEG signals is becoming a popular measure for quantifying functional connectivity, because it affords a more detailed picture of the synchrony relationships between channels at different times and frequencies. However, the accompanying increase in data dimensionality incurs a serious multiple testing problem for determining PLV significance. Standard methods for controlling Type I error, which treat all hypotheses as belonging to a single family, can fail to detect any significant discoveries.
View Article and Find Full Text PDFObjective: The use of functional near-infrared spectroscopy (fNIRS) is growing, leading to a need for methods to summarise data from multiple studies. However, this is difficult using the current channel-based methods when experiments do not share a common channel (CH) arrangement. Thus, we proposed and implemented a CH-independent analysis method for summarising fNIRS data.
View Article and Find Full Text PDFWe examined whether food identity information presented as name labels would influence perception of basic tastes. To test this hypothesis, we used 10 aqueous taste solutions consisting of 2-3 of the 5 basic tastes in different ratios and presented them with one of these food names: "lemon," "coffee jelly," "caramel candy," and "consomme soup." Forty-six participants tasted samples presented with either food-name labels or random number labels.
View Article and Find Full Text PDFThe registration of functional brain data to common stereotaxic brain space facilitates data sharing and integration across different subjects, studies, and even imaging modalities. Thus, we previously described a method for the probabilistic registration of functional near-infrared spectroscopy (fNIRS) data onto Montreal Neurological Institute (MNI) coordinate space that can be used even when magnetic resonance images of the subjects are not available. This method, however, requires the careful measurement of scalp landmarks and fNIRS optode positions using a 3D-digitizer.
View Article and Find Full Text PDFNear infrared spectroscopy (NIRS), an emerging non-invasive tool for functional neuroimaging, has evolved as a multichannel technique allowing simultaneous measurements through many channels ranging from below ten to above hundred. Simultaneous testing of such a large number of channels escalates the risk of Type I error, therefore multiplicity correction is unavoidable. To date, only a few studies have considered this issue using Bonferroni correction, which is an effective conservative solution, but may be too severe for neuroimaging.
View Article and Find Full Text PDFSensory evaluation (SE) of food attributes involves various levels of cognitive functions, yet not much has been studied about its neural basis. Using multi-channel functional near-infrared spectroscopy (fNIRS), we examined the activation of the anterior portion of the lateral prefrontal cortex (LPFC) of 12 healthy volunteers during the SE of tea samples. The experimental task used corresponded to the early phase of the same-different test, and required subjects to attentively taste tea samples and memorize their flavors.
View Article and Find Full Text PDFThe registration of functional brain data to the common brain space offers great advantages for inter-modal data integration and sharing. However, this is difficult to achieve in functional near-infrared spectroscopy (fNIRS) because fNIRS data are primary obtained from the head surface and lack structural information of the measured brain. Therefore, in our previous articles, we presented a method for probabilistic registration of fNIRS data to the standard Montreal Neurological Institute (MNI) template through international 10-20 system without using the subject's magnetic resonance image (MRI).
View Article and Find Full Text PDF