Understanding the activation of CO on the surface of the heterogeneous catalysts comprised of metal/metal oxide interfaces is of critical importance since it is not only a prerequisite for converting CO to value-added chemicals but also often, a rate-limiting step. In this context, our current work focuses on the interaction of CO with heterogeneous bi-component model catalysts consisting of small MnO clusters supported on the Pd(111) single crystal surface. These metal oxide-on-metal 'reverse' model catalyst architectures were investigated via temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) techniques under ultra-high vacuum (UHV) conditions.
View Article and Find Full Text PDF