Publications by authors named "Aravinda de Silva"

The standard dengue virus (DENV) neutralization assay inconsistently predicts dengue protection. We compare how IgG ELISA, envelope domain III (EDIII), or non-structural protein 1 (NS1) binding antibodies, and titers from plaque reduction neutralization tests (PRNTs) using standard and mature viruses are associated with dengue. The ELISA measures IgG antibodies that bind to inactivated DENV1-4.

View Article and Find Full Text PDF

Background: Serology for dengue viruses (DENV) and Zika virus (ZIKV) has been hindered by antibody cross-reactivity, which limits the utility of these tests for surveillance and assessment of sero-status. Our aim was to develop a multiplexed IgG-based assay with increased accuracy to assess the history of previous DENV and ZIKV infections.

Methods: We developed and assessed the analytical performance of a sample-sparing, multiplexed, microsphere-based serological assay using domain III of the envelope protein (EDIII) of DENV serotypes 1-4 and ZIKV, the most variable region between each virus.

View Article and Find Full Text PDF

Background: Data on long-term neurodevelopmental outcomes of normocephalic children (born with normal head circumference) exposed to Zika virus in utero are scarce. We aimed to compare neurodevelopmental outcomes in normocephalic children up to age 48 months with and without Zika virus exposure in utero.

Methods: In this prospective cohort study, we included infants from two cohorts of normocephalic children born in León and Managua, Nicaragua during the 2016 Zika epidemic.

View Article and Find Full Text PDF

Cross-reactive antibodies (Abs) to epitopes that span envelope proteins on the virion surface are hypothesized to protect against dengue. Here, we measured Abs targeting the quaternary envelope dimer epitope (EDE) as well as neutralizing and binding Abs and evaluate their association with dengue virus (DENV) infection, vaccine response, and disease outcome in dengue vaccinated and unvaccinated children (n=252) within a longitudinal cohort in Cebu, Philippines (n=2,996). Abs targeting EDE were prevalent and strongly associated with broad neutralization of DENV1-4 in those with baseline multitypic immunity.

View Article and Find Full Text PDF

Recent work demonstrates the limitations of the standard dengue virus (DENV) neutralization assay to predict protection against dengue. We perform studies to compare how a commercial IgG ELISA, envelope domain III (EDIII) or non-structural protein 1 (NS1) binding antibodies, and titers from plaque reduction neutralization tests (PRNTs) using reference standard and clinical mature viruses are associated with dengue disease. Healthy children (n = 1,206) in Cebu, Philippines were followed for 5 years.

View Article and Find Full Text PDF

Background: A three-dose dengue vaccine (CYD-TDV) was licensed for use in children aged 9 years and older starting in 2015 in several dengue-endemic countries. In 2016, the Philippine Department of Health implemented a dengue vaccination programme, which was discontinued because of safety concerns. We assessed the relative risk of developing virologically confirmed dengue among children who did or did not receive a single dose of CYD-TDV by previous dengue virus (DENV) infections at baseline classified as none, one, and two or more infections.

View Article and Find Full Text PDF

Dengue viruses (DENV1-4) are the most prevalent arboviruses in humans and a major public health concern. Understanding immune mechanisms that modulate DENV infection outcome is critical for vaccine development. Neutralizing antibodies (nAbs) are an essential component of the protective immune response, yet their measurement often relies on a single cellular substrate and partially mature virions, which does not capture the full breadth of neutralizing activity and may lead to biased estimations of nAb potency.

View Article and Find Full Text PDF
Article Synopsis
  • The Zika virus has caused autochthonous transmission in 87 countries since 2015, posing risks like Guillain-Barré syndrome and complications in pregnancy, underscoring an urgent need for effective vaccines and enhanced understanding of immunity against ZIKV.
  • Researchers developed a new diagnostic test called blockade-of-binding (BOB) ELISA, using specific monoclonal antibodies to differentiate ZIKV from other flaviviruses, and found it performed better than traditional tests in validating ZIKV infections and assessing vaccine responses.
  • The BOB assays demonstrated high sensitivity and specificity in detecting antibodies from recent and past ZIKV infections, indicating potential for broader applications in monitoring ZIKV immunity and evaluating vaccine efficacy.
View Article and Find Full Text PDF

The envelope (E) glycoprotein is the primary target of type-specific (TS) neutralizing antibodies (nAbs) after infection with any of the four distinct dengue virus serotypes (DENV1-4). nAbs can be elicited to distinct structural E domains (EDs) I, II, or III. However, the relative contribution of these domain-specific antibodies is unclear.

View Article and Find Full Text PDF

The four dengue virus (DENV) serotypes infect several hundred million people each year. Although primary infection is generally mild, subsequent infection by differing serotypes increases the risk for symptomatic disease ranging from fever to life-threatening shock. Despite the availability of licensed vaccines, a comprehensive understanding of antibodies that target the viral envelope protein and protect from infection remains incomplete.

View Article and Find Full Text PDF

The flavin-dependent halogenase AbeH produces 5-chlorotryptophan in the biosynthetic pathway of the chlorinated bisindole alkaloid BE-54017. We report that , AbeH (assisted by the flavin reductase AbeF) can chlorinate and brominate tryptophan as well as other indole derivatives and substrates with phenyl and quinoline groups. We solved the X-ray crystal structures of AbeH alone and complexed with FAD, as well as crystal structures of the tryptophan-6-halogenase BorH alone, in complex with 6-chlorotryptophan, and in complex with FAD and tryptophan.

View Article and Find Full Text PDF

The four dengue virus serotypes (DENV1-4) are the most prevalent arboviruses in humans and a major public health concern worldwide. Understanding immune mechanisms that modulate DENV infection outcome is critical for epidemic preparedness and development of a safe and effective vaccine. Neutralizing antibodies (nAbs) are an essential component of the protective response, yet their measurement often relies on a single cellular substrate and partially mature virions, which do not capture the full breadth of neutralizing activity and may lead to biased estimations of nAb potency.

View Article and Find Full Text PDF

The ongoing COVID-19 pandemic has caused millions of deaths and the continued emergence of new variants suggests continued circulation in the human population. In the current time of vaccine availability and new therapeutic development, including antibody-based therapies, many questions about long-term immunity and protection remain uncertain. Identification of protective antibodies in individuals is often done using highly specialized and challenging assays such as functional neutralizing assays, which are not available in the clinical setting.

View Article and Find Full Text PDF

A hallmark of Dengue virus (DENV) pathogenesis is the potential for antibody-dependent enhancement, which is associated with deadly DENV secondary infection, complicates the identification of correlates of protection, and negatively impacts the safety and efficacy of DENV vaccines. ADE is linked to antibodies targeting the fusion loop (FL) motif of the envelope protein, which is completely conserved in mosquito-borne flaviviruses and required for viral entry and fusion. In the current study, we utilized saturation mutagenesis and directed evolution to engineer a functional variant with a mutated FL (D2-FL) which is not neutralized by FL-targeting monoclonal antibodies.

View Article and Find Full Text PDF

To understand the dynamics of Zika virus (ZIKV)-specific antibody immunity in children born to mothers in a flavivirus-endemic region during and after the emergence of ZIKV in the Americas. We performed serologic testing for ZIKV cross-reactive and type-specific IgG in two longitudinal cohorts, which enrolled pregnant women and their children (PW1 and PW2) after the beginning of the ZIKV epidemic in Nicaragua. Quarterly samples from children over their first two years of life and maternal blood samples at birth and at the end of the two-year follow-up period were studied.

View Article and Find Full Text PDF

The four dengue virus serotypes co-circulate globally and cause significant human disease. Dengue vaccine development is challenging because some virus-specific antibodies are protective, while others are implicated in enhanced viral replication and more severe disease. Current dengue tetravalent vaccines contain four live attenuated serotypes formulated to theoretically induce balanced protective immunity.

View Article and Find Full Text PDF

We currently have an incomplete understanding of why only a fraction of human antibodies that bind to flaviviruses block infection of cells. Here we define the footprint of a strongly neutralizing human monoclonal antibody (mAb G9E) with Zika virus (ZIKV) by both X-ray crystallography and cryo-electron microscopy. Flavivirus envelope (E) glycoproteins are present as homodimers on the virion surface, and G9E bound to a quaternary structure epitope spanning both E protomers forming a homodimer.

View Article and Find Full Text PDF

Amidst the therapeutic void at the onset of the COVID-19 pandemic, a critical mass of scientific and clinical interest coalesced around COVID-19 convalescent plasma (CCP). To date, the CCP literature has focused largely on safety and efficacy outcomes, but little on implementation outcomes or experience. Expert opinion suggests that if CCP has a role in COVID-19 treatment, it is early in the disease course, and it must deliver a sufficiently high titer of neutralizing antibodies (nAb).

View Article and Find Full Text PDF

COVID-19 convalescent plasma (CCP) was an early and widely adopted putative therapy for severe COVID-19. Results from randomized control trials and observational studies have failed to demonstrate a clear therapeutic role for CCP for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Underlying these inconclusive findings is a broad heterogeneity in the concentrations of neutralizing antibodies (nAbs) between different CCP donors.

View Article and Find Full Text PDF

The four dengue virus serotypes (DENV1-4) are mosquito-borne flaviviruses of humans. Several live-attenuated tetravalent DENV vaccines are at different stages of clinical development and approval. In children with no baseline immunity to DENVs, a leading vaccine (Dengvaxia) is efficacious against vaccine-matched DENV4 genotype II (GII) strains but not vaccine-mismatched DENV4 GI viruses.

View Article and Find Full Text PDF

Dengue viruses (DENV serotypes 1-4) and Zika virus (ZIKV) are related flaviviruses that continue to be a public health concern, infecting hundreds of millions of people annually. The traditional live-attenuated virus vaccine approach has been challenging for the four DENV serotypes because of the need to achieve balanced replication of four independent vaccine components. Subunit vaccines represent an alternative approach that may circumvent problems inherent with live-attenuated DENV vaccines.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of deaths around the world within the past 2 years. Transmission within the United States has been heterogeneously distributed by geography and social factors with little data from North Carolina. Here, we describe results from a weekly cross-sectional study of 12,471 unique hospital remnant samples from 19 April to 26 December 2020 collected by four clinical sites within the University of North Carolina Health system, with a majority of samples from urban, outpatient populations in central North Carolina.

View Article and Find Full Text PDF

Maturation of dengue viruses (DENVs) alters the structure, immunity, and infectivity of the virion and highly mature particles represent the dominant form . The production of highly mature virions principally relies on the structure and function of the viral premature membrane protein (prM) and its cleavage by the host protease furin. We redeveloped a reliable clonal cell line (VF1) which produces single-round mature DENVs without the need for DENV reverse genetics.

View Article and Find Full Text PDF