Publications by authors named "Aravind R Rammohan"

Mechanosensitivity of cell spread area to substrate stiffness has been established both through experiments and different types of mathematical models of varying complexity including both the mechanics and biochemical reactions in the cell. What has not been addressed in previous mathematical models is the role of cell membrane dynamics on cell spreading, and an investigation of this issue is the goal of this work. We start with a simple mechanical model of cell spreading on a deformable substrate and progressively layer mechanisms to account for the traction dependent growth of focal adhesions, focal adhesion induced actin polymerization, membrane unfolding/exocytosis and contractility.

View Article and Find Full Text PDF

This manuscript provides a comprehensive study of adhesion behavior and its governing mechanisms when polyimide undergoes various modes of detachment from silica glass. Within the framework of steered molecular dynamics, we develop three different adhesion measurement techniques: pulling, peeling, and sliding. Such computational methodologies can be applied to investigate heterogeneous materials with differing interfacial adhesion modes.

View Article and Find Full Text PDF

Focal adhesions are often observed at the cell's periphery. We provide an explanation for this observation using a system-level mathematical model of a cell interacting with a two-dimensional substrate. The model describes the biological cell as a hypoelastic continuum material whose behavior is coupled to a deformable, linear elastic substrate via focal adhesions that are represented by collections of linear elastic attachments between the cell and the substrate.

View Article and Find Full Text PDF

Tiny details of the phospholipid (DMPC) membrane morphology in close vicinity to nanostructured silica surfaces have been discovered in the atomic force microscopy experiments. The structural features of the silica surface were varied in the experiments by the deposition of silica nanoparticles of different diameter on plane and smooth silica substrates. It was found that, due to the barrier function of the lipid membrane, only particles larger than 22 nm in diameter with a smooth surface were completely enveloped by the lipid membrane.

View Article and Find Full Text PDF

A nanoscale range of surface feature curvatures where lipid membranes lose integrity and form pores has been found experimentally. The pores were experimentally observed in the l-alpha-dimyristoyl phosphatidylcholine membrane around 1.2-22 nm polar nanoparticles deposited on mica surface.

View Article and Find Full Text PDF