Fragment-based screening is an efficient method for early-stage drug discovery. In this study, we aimed to create a fragment library optimized for producing high hit rates against RNA targets. RNA has historically been an underexplored target, but recent research suggests potential for optimizing small molecule libraries for RNA binding.
View Article and Find Full Text PDFTranslation regulation and localized translation are essential for protein synthesis, controlling all aspects of cellular function in health and disease [...
View Article and Find Full Text PDFAminoacyl tRNA synthetases (aaRSs) are a well-studied family of enzymes with a canonical role in charging tRNAs with a specific amino acid. These proteins appear to also have non-canonical roles, including post-transcriptional regulation of mRNA expression. Many aaRSs were found to bind mRNAs and regulate their translation into proteins.
View Article and Find Full Text PDFSynthesis of all proteins in eukaryotic cells, apart from a few organellar proteins, is done by cytosolic ribosomes. Many of these ribosomes are localized in the vicinity of the functional site of their encoded protein, enabling local protein synthesis. Studies in various organisms and tissues revealed that such locally translating ribosomes are also present near mitochondria.
View Article and Find Full Text PDFNuclear-encoded mitochondrial protein mRNAs have been found to be localized and locally translated within neuronal processes. However, the mechanism of transport for those mRNAs to distal locations is not fully understood. Here, we describe axonal co-transport of Cox7c with mitochondria.
View Article and Find Full Text PDFA new environmental study has discovered marine phages containing deoxyuridine instead of deoxythymidine in their DNA. The newly isolated viruses are phylogenetically distinct from any currently known double-stranded DNA phages.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases (aaRSs) are a conserved family of enzymes with an essential role in protein synthesis: ligating amino acids to cognate tRNA molecules for translation. In addition to their role in tRNA charging, aaRSs have acquired non-canonical functions, including post-transcriptional regulation of mRNA expression. Yet, the extent and mechanisms of these post-transcriptional functions are largely unknown.
View Article and Find Full Text PDFRecent studies underscore RNA modifications as a novel mechanism to coordinate expression and function of different genes. While modifications on the sugar or base moieties of tRNA are well known, their roles in mRNA regulation are only starting to emerge. Interestingly, some modifications are present in both tRNA and mRNA, and here we discuss the functional significance of these common features.
View Article and Find Full Text PDFNucleic Acids Res
January 2021
Modification of nucleotides within an mRNA emerges as a key path for gene expression regulation. Pseudouridine is one of the most common RNA modifications; however, only a few mRNA modifiers have been identified to date, and no one mRNA pseudouridine reader is known. Here, we applied a novel genome-wide approach to identify mRNA regions that are bound by yeast methionine aminoacyl tRNAMet synthetase (MetRS).
View Article and Find Full Text PDFMitochondria contain a complete translation machinery that is used to translate its internally transcribed mRNAs. This machinery uses a distinct set of tRNAs that are charged with cognate amino acids inside the organelle. Interestingly, charging is executed by aminoacyl tRNA synthetases (aaRS) that are encoded by the nuclear genome, translated in the cytosol, and need to be imported into the mitochondria.
View Article and Find Full Text PDFA major challenge in cell and developmental biology is the automated identification and quantitation of cells in complex multilayered tissues. We developed CytoCensus: an easily deployed implementation of supervised machine learning that extends convenient 2D 'point-and-click' user training to 3D detection of cells in challenging datasets with ill-defined cell boundaries. In tests on such datasets, CytoCensus outperforms other freely available image analysis software in accuracy and speed of cell detection.
View Article and Find Full Text PDFDuring and vertebrate brain development, the conserved transcription factor Prospero/Prox1 is an important regulator of the transition between proliferation and differentiation. Prospero level is low in neural stem cells and their immediate progeny, but is upregulated in larval neurons and it is unknown how this process is controlled. Here, we use single molecule fluorescent hybridisation to show that larval neurons selectively transcribe a long mRNA isoform containing a 15 kb 3' untranslated region, which is bound in the brain by the conserved RNA-binding protein Syncrip/hnRNPQ.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2019
Mitochondria exert their many functions through a repertoire of hundreds of proteins. The vast majority of these proteins are encoded in the nuclear genome, translated in the cytosol and imported into the mitochondria. Current models, derived mainly from work in yeast, suggest that the translation of many of these proteins can occur in close vicinity to the mitochondria outer membrane by localized ribosomes.
View Article and Find Full Text PDFThe yeast S. cerevisiae serves as a model organism for many decades. Numerous molecular tools have been developed throughout the years to engineer its genome.
View Article and Find Full Text PDFWiley Interdiscip Rev RNA
March 2020
Aminoacyl tRNA synthetases (aaRS) are well studied for their roles in tRNA charging with cognate amino acid. Nevertheless, numerous lines of evidence indicate that these proteins have roles other than tRNA charging. These include coordination of cellular signaling cascades, induction of cytokines outside the cell and transcription regulation.
View Article and Find Full Text PDFPUF proteins, named for Drosophila Pumilio (PUM) and Caenorhabditis elegans fem-3-binding factor (FBF), recognize specific sequences in the mRNAs they bind and control. RNA binding by classical PUF proteins is mediated by a characteristic PUM homology domain (PUM-HD). The Puf1 and Puf2 proteins possess a distinct architecture and comprise a highly conserved subfamily among fungal species.
View Article and Find Full Text PDFAminoacyl-tRNA synthetases (aaRSs) are well studied for their role in binding and charging tRNAs with cognate amino acids. Recent RNA interactome studies had suggested that these enzymes can also bind polyadenylated RNAs. Here, we explored the mRNA repertoire bound by several yeast aaRSs.
View Article and Find Full Text PDFRibosome queuing is a fundamental phenomenon suggested to be related to topics such as genome evolution, synthetic biology, gene expression regulation, intracellular biophysics, and more. However, this phenomenon hasn't been quantified yet at a genomic level. Nevertheless, methodologies for studying translation (e.
View Article and Find Full Text PDFMembers of the yeast family of PUF proteins bind unique subsets of mRNA targets that encode proteins with common functions. They therefore became a paradigm for post-transcriptional gene control. To provide new insights into the roles of the seemingly redundant Puf1 and Puf2 members, we monitored the growth rates of their deletions under many different stress conditions.
View Article and Find Full Text PDFBiochemistry (Mosc)
October 2016
The diverse functions of mitochondria depend on hundreds of different proteins. The vast majority of these proteins is encoded in the nucleus, translated in the cytosol, and must be imported into the organelle. Import was shown to occur after complete synthesis of the protein, with the assistance of cytosolic chaperones that maintain it in an unfolded state and target it to the mitochondrial translocase of the outer membrane (TOM complex).
View Article and Find Full Text PDFRNA-binding proteins (RBPs) play important roles in every aspect of RNA metabolism and regulation. Their identification is a major challenge in modern biology. Only a few in vitro and in vivo methods enable the identification of RBPs associated with a particular target mRNA.
View Article and Find Full Text PDFBackground: mRNA binding proteins (RBPs) constitute 10-15% of the eukaryotic proteome and play important part in post-transcriptional regulation of gene expression. Due to the instability of RNA and the transient nature its interaction with RBPs, identification of novel RBPs is a significant challenge. Recently, a novel methodology for RBP purification and identification (termed RaPID) was presented, which allows high affinity purification of RBPs while associated with mRNA in vivo.
View Article and Find Full Text PDFLocal synthesis of proteins near their activity site has been demonstrated in many biological systems, and has diverse contributions to cellular functions. Studies in recent years have revealed that hundreds of mitochondria-destined proteins are synthesized by cytosolic ribosomes near the mitochondrial outer membrane, indicating that localized translation also occurs at this cellular locus. Furthermore, in the last year central factors that are involved in this process were identified in yeast, Drosophila, and human cells.
View Article and Find Full Text PDFIt is well established that import of proteins into mitochondria can occur after their complete synthesis by cytosolic ribosomes. Recently, an additional model was revived, proposing that some proteins are imported co-translationally. This model entails association of ribosomes with the mitochondrial outer membrane, shown to be mediated through the ribosome-associated chaperone nascent chain-associated complex (NAC).
View Article and Find Full Text PDF