The development of methods to follow the dynamics of synaptic molecules in living neurons has radically altered our view of the synapse, from that of a generally static structure to that of a dynamic molecular assembly at steady state. This view holds not only for relatively labile synaptic components, such as synaptic vesicles, cytoskeletal elements, and neurotransmitter receptors, but also for the numerous synaptic molecules known as scaffolding molecules, a generic name for a diverse class of molecules that organize synaptic function in time and space. Recent studies reveal that these molecules, which confer a degree of stability to synaptic assemblies over time scales of hours and days, are themselves subject to significant dynamics.
View Article and Find Full Text PDFSynapses undergo substantial activity-dependent and independent remodeling over time scales of minutes, hours, and days. Presumably, changes in presynaptic properties should be matched by corresponding changes in postsynaptic properties and vice versa. Wherever measured, presynaptic and postsynaptic molecular properties tend to correlate, yet these correlations are often quite imperfect, raising questions as the origins of such mismatches: Are these the outcome of "single snapshot" analyses of asynchronous remodeling processes? Alternatively, do these indicate that synapses genuinely vary in the "stoichiometries" of their presynaptic and postsynaptic molecular contents? If so, are these "stoichiometries" preserved over time? To address these questions, we followed the matching dynamics of the presynaptic active-zone molecule Munc13-1 and the postsynaptic molecule PSD-95 in networks of cultured cortical mouse neurons.
View Article and Find Full Text PDFRecent studies indicate that synaptic vesicles (SVs) are continuously interchanged among nearby synapses at very significant rates. These dynamics and the lack of obvious barriers confining synaptic vesicles to specific synapses would seem to challenge the ability of synapses to maintain a constant amount of synaptic vesicles over prolonged time scales. Moreover, the extensive mobilization of synaptic vesicles associated with presynaptic activity might be expected to intensify this challenge.
View Article and Find Full Text PDF