Publications by authors named "Aratz Genua"

In an attempt to prepare sustainable epoxy thermosets, this study introduces for the first time the idea to use antagonist structures (aromatic/aliphatic) or functionalities (acid/amine) as hardeners to produce reprocessable resins based on epoxidized camelina oil (ECMO). Two kinds of mixtures were tested: one combines aromatic/aliphatic dicarboxylic acids: 2,2'-dithiodibenzoic acid (DTBA) and 3,3'-dithiodipropionic acid (DTDA); another is the combination of two aromatic structures with acid/amine functionality: DTBA and 4-aminophenyl disulfide (4-AFD). DSC and FT-IR analyses were used as methods to analyze the curing reaction of ECMO with the hardeners.

View Article and Find Full Text PDF

Epoxy resins are widely used in the composite industry due to their dimensional stability, chemical resistance, and thermo-mechanical properties. However, these thermoset resins have important drawbacks. (i) The vast majority of epoxy matrices are based on non-renewable fossil-derived materials, and (ii) the highly cross-linked molecular architecture hinders their reprocessing, repairing, and recycling.

View Article and Find Full Text PDF

This work reports for the first time the copolymerization studies of 11 newly synthesized epoxidized vegetable oils (EVOs) that reacted with a disulfide-based aromatic dicarboxylic acid (DCA) to produce thermoset materials with recyclability properties. These new EVOs' reactivity and properties were compared with those of the two commercial references: epoxidized linseed oil (ELO) and epoxidized soybean oil (ESO). The structure-reactivity correlation is proposed by differential scanning calorimetry (DSC) analysis, corroborating the epoxy content of EVO monomers, the initiator effect, the copolymerization reaction enthalpy, and the temperature range.

View Article and Find Full Text PDF

A simple, fast, sustainable, and scalable strategy to prepare nanoporous materials based on poly(ionic liquid)s (PILs) is presented. The synthetic strategy relies on the radical polymerization of crosslinker-type ionic liquid (IL) monomers in the presence of an analogous IL, which acts as a porogenic solvent. This IL can be extracted easily after polymerization and recycled for further use.

View Article and Find Full Text PDF

In legumes, root nodule organogenesis is activated in response to morphogenic lipochitin oligosaccharides that are synthesized by bacteria, commonly known as rhizobia. Successful symbiotic interaction results in the formation of highly specialized organs called root nodules, which provide a unique environment for symbiotic nitrogen fixation. In wild-type plants the number of nodules is regulated by a signalling mechanism integrating environmental and developmental cues to arrest most rhizobial infections within the susceptible zone of the root.

View Article and Find Full Text PDF