The vibration of Fe3O4 nanoparticles in response to an alternating magnetic field can be sensitively detected using contact mode atomic force microscopy (AFM) combined with selective modulation of magnetic domains. While imaging patterned samples of magnetic nanoparticles with contact mode AFM, a magnetic field was applied to drive sample vibration. The field altered in polarity and strength according to parameters of an AC current applied to a solenoid located under the sample.
View Article and Find Full Text PDFThis paper highlights the relation between the shape of iron oxide (FeO) particles and their magnetic sensing ability. We synthesized FeO nanocubes and nanospheres having tunable sizes via solvothermal and thermal decomposition synthesis reactions, respectively, to obtain samples in which the volumes and body diagonals/diameters were equivalent. Vibrating sample magnetometry (VSM) data showed that the saturation magnetization () and coercivity of 100-225 nm cubic magnetic nanoparticles (MNPs) were, respectively, 1.
View Article and Find Full Text PDFMagnetic particles are widely used as signal labels in a variety of biological sensing applications, such as molecular detection and related strategies that rely on ligand-receptor binding. In this review, we explore the fundamental concepts involved in designing magnetic particles for biosensing applications and the techniques used to detect them. First, we briefly describe the magnetic properties that are important for bio-sensing applications and highlight the associated key parameters (such as the starting materials, size, functionalization methods, and bio-conjugation strategies).
View Article and Find Full Text PDFThis manuscript describes a new type of nanomaterial, namely superparamagnetic Au@Co nanochains with optical extinctions in the near infrared (NIR). The Au@Co nanochains were synthesized via a one-pot galvanic replacement route involving a redox-transmetalation process in aqueous medium, where Au salt was reduced to form Au shells on Co seed templates, affording hollow Au@Co nanochains. The Au shells serve not only as a protective coating for the Co nanochain cores, but also to give rise to the optical properties of these unique nanostructures.
View Article and Find Full Text PDFTa/Ru/Co/Ru/Co/Cu/Co/NiFe/Ta spin-valve giant magnetoresistive (GMR) multilayers were deposited using UHV magnetron sputtering and optimized to achieve a 13% GMR ratio before patterning. The GMR multilayer was patterned into 12 sensor arrays using a combination of e-beam and optical lithographies. Arrays were constructed with 400 nm × 400 nm and 400 nm × 200 nm sensors for the detection of reporter nanoparticles.
View Article and Find Full Text PDFBioreactor systems, an integral component of tissue engineering, are designed to simulate complex in vivo conditions to impart functionality to artificial tissue. All standard forms of stretch bioreactors require physical contact with artificial heart muscle (AHM). However, we believe that noncontact stretch bioreactors have the potential to lead to higher functional benefit of AHM.
View Article and Find Full Text PDFMagnetic sensing utilizes the detection of biomolecule-conjugated magnetic nanoparticles (MNPs). Our new strategy offers a novel approach to magnetic sensing where in situ conversion produces a "loss of signal" in the sensing device. This report demonstrates the enzymatic conversion of Fe3O4 MNPs to a non-magnetic precipitate via reduction by l-ascorbic acid generated by the action of alkaline phosphatase.
View Article and Find Full Text PDFThe research strategy described in this manuscript harnesses the attractive properties of hydrogels, gold nanorods (Aurods), and magnetic nanoparticles (MNPs) by synthesizing one unique multi-responsive nanostructure. This novel hybrid structure consists of silica-coated magnetic particles encapsulated within a thermo-responsive P(NIPAM-co-AA) hydrogel network on which Aurods are assembled. Furthermore, this research demonstrates that these composite particles respond to several forms of external stimuli (temperature, pH, light, and/or applied magnetic field) owing to their specific architecture.
View Article and Find Full Text PDFWe report the first in vitro enzymatic synthesis of paramagnetic and antiferromagnetic nanoparticles toward magnetic ELISA reporting. With our procedure, alkaline phosphatase catalyzes the dephosphorylation of l-ascorbic-2-phosphate, which then serves as a reducing agent for salts of iron, gadolinium, and holmium, forming magnetic precipitates of Fe45±14Gd5±2O50±15 and Fe42±4Ho6±4O52±5. The nanoparticles were found to be paramagnetic at 300 K and antiferromagnetic under 25 K.
View Article and Find Full Text PDFDemand for highly sensitive, robust diagnostics and environmental monitoring methods has led to extensive research in improving reporter technologies. Inorganic phosphorescent materials exhibiting persistent luminescence are commonly found in electroluminescent displays and glowing paints but are not widely used as reporters in diagnostic assays. Persistent luminescence nanoparticles (PLNPs) offer advantages over conventional photoluminescent probes, including the potential for enhanced sensitivity by collecting time-resolved measurements or images with decreased background autofluorescence while eliminating the need for expensive optical hardware, superior resistance to photobleaching, amenability to quantitation, and facile bioconjugation schemes.
View Article and Find Full Text PDFThe tremendous interest in magnetic nanoparticles (MNPs) is reflected in published research that ranges from novel methods of synthesis of unique nanoparticle shapes and composite structures to a large number of MNP characterization techniques, and finally to their use in many biomedical and nanotechnology-based applications. The knowledge gained from this vast body of research can be made more useful if we organize the associated results to correlate key magnetic properties with the parameters that influence them. Tuning these properties of MNPs will allow us to tailor nanoparticles for specific applications, thus increasing their effectiveness.
View Article and Find Full Text PDFBy systematically varying the reaction parameters in a liquid-phase reduction reaction, large FeCo nanocubes with tunable body diagonal lengths of 175, 350, and 450 nm were synthesized. The nanocubes were initially stabilized with poly(vinyl pyrrolidone) (PVP) and then coated with a relatively thin layer of silica (~55 nm thick), which allowed them to retain their cubic shape. The magnetization curves showed that the PVP-stabilized nanocubes exhibited a high saturation magnetization of 167 ± 4 emu/g.
View Article and Find Full Text PDFThe growth kinetics of Thermus thermophilus HB27 was investigated in rich medium (Thermus medium) under batch cultivation at 65 degrees C in 3-l fermentors. The growth and oxygen consumption rates were highly dependent on the aeration and agitation rates. Volumetric mass transfer coefficient (K(L)a, h(-1)) and hence oxygen transfer rate (OTR, mol m (-3) h(-1)) into the fermentation broth increased with increased aeration and/or agitation rates.
View Article and Find Full Text PDF