Publications by authors named "Arash Jamshidi"

DNA methylation is a fundamental epigenetic mark that governs gene expression and chromatin organization, thus providing a window into cellular identity and developmental processes. Current datasets typically include only a fraction of methylation sites and are often based either on cell lines that underwent massive changes in culture or on tissues containing unspecified mixtures of cells. Here we describe a human methylome atlas, based on deep whole-genome bisulfite sequencing, allowing fragment-level analysis across thousands of unique markers for 39 cell types sorted from 205 healthy tissue samples.

View Article and Find Full Text PDF

In the Circulating Cell-free Genome Atlas (NCT02889978) substudy 1, we evaluate several approaches for a circulating cell-free DNA (cfDNA)-based multi-cancer early detection (MCED) test by defining clinical limit of detection (LOD) based on circulating tumor allele fraction (cTAF), enabling performance comparisons. Among 10 machine-learning classifiers trained on the same samples and independently validated, when evaluated at 98% specificity, those using whole-genome (WG) methylation, single nucleotide variants with paired white blood cell background removal, and combined scores from classifiers evaluated in this study show the highest cancer signal detection sensitivities. Compared with clinical stage and tumor type, cTAF is a more significant predictor of classifier performance and may more closely reflect tumor biology.

View Article and Find Full Text PDF

Context: Prolonged high salt (sodium) intake can increase the risk of hypertension and cardiovascular disease. Behavioral interventions may help reduce sodium intake at the population level.

Objective: The effectiveness of behavior change interventions to reduce sodium intake in adults was investigated in this systematic review and meta-analysis.

View Article and Find Full Text PDF

Blood cell counts often fail to report on immune processes occurring in remote tissues. Here, we use immune cell type-specific methylation patterns in circulating cell-free DNA (cfDNA) for studying human immune cell dynamics. We characterized cfDNA released from specific immune cell types in healthy individuals (N = 242), cross sectionally and longitudinally.

View Article and Find Full Text PDF

Background: Oncology applications of cell-free DNA analysis are often limited by the amount of circulating tumor DNA and the fraction of cell-free DNA derived from tumor cells in a blood sample. This circulating tumor fraction varies widely between individuals and cancer types. Clinical factors that influence tumor fraction have not been completely elucidated.

View Article and Find Full Text PDF

Cell-free RNA (cfRNA) is a promising analyte for cancer detection. However, a comprehensive assessment of cfRNA in individuals with and without cancer has not been conducted. We perform the first transcriptome-wide characterization of cfRNA in cancer (stage III breast [n = 46], lung [n = 30]) and non-cancer (n = 89) participants from the Circulating Cell-free Genome Atlas (NCT02889978).

View Article and Find Full Text PDF

Purpose: Although previous literature has reported that regular green tea consumption may improve blood pressure, the evidence from these studies is not consistent. The present study systematically reviewed randomised controlled trials and examined the effect of green tea consumption on blood pressure using meta-analysis.

Methods: Search of ProQuest, PubMed, Scopus and Cochrane Library (CENTERAL) was conducted, to identify eligible articles.

View Article and Find Full Text PDF

Optical antennas have been widely used for sensitive photodetection, efficient light emission, high resolution imaging, and biochemical sensing because of their ability to capture and focus light energy beyond the diffraction limit. However, widespread application of optical antennas has been limited due to lack of appropriate methods for uniform and large area fabrication of antennas as well as difficulty in achieving an efficient design with small mode volume (gap spacing < 10nm). Here, we present a novel optical antenna design, arch-dipole antenna, with optimal radiation efficiency and small mode volume, 5 nm gap spacing, fabricated by CMOS-compatible deep-UV spacer lithography.

View Article and Find Full Text PDF

We report a fast, high-throughput method to create size-tunable micro/nanoparticle clusters via evaporative assembly in picoliter-scale droplets of particle suspension. Mediated by gravity force and surface tension force of a contacting surface, picoliter-scale droplets of the suspension are generated from a nanofabricated printing head. Rapid evaporative self-assembly of the particles on a hydrophobic surface leads to fast clustering of micro/nanoparticles and forms particle clusters of tunable sizes and controlled spacing.

View Article and Find Full Text PDF

Spatially composition-graded CdS(x)Se(1-x) (x = 0-1) nanowires are grown and transferred as parallel arrays onto Si/SiO(2) substrates by a one-step, directional contact printing process. Upon subsequent device fabrication, an array of tunable-wavelength photodetectors is demonstrated. From the spectral photoconductivity measurements, the cutoff wavelength for the device array, as determined by the bandgap, is shown to cover a significant portion of the visible spectrum.

View Article and Find Full Text PDF

A high-throughput process for nanotexturing of hard and soft surfaces based on the roll-to-roll anodization and etching of low-cost aluminum foils is presented. The process enables the precise control of surface topography, feature size, and shape over large areas thereby presenting a highly versatile platform for fabricating substrates with user-defined, functional performance. Specifically, the optical and surface wetting properties of the foil substrates were systematically characterized and tuned through the modulation of the surface texture.

View Article and Find Full Text PDF

A simple approach is described to fabricate reversible, thermally- and optically responsive actuators utilizing composites of poly(N-isopropylacrylamide) (pNIPAM) loaded with single-walled carbon nanotubes. With nanotube loading at concentrations of 0.75 mg/mL, we demonstrate up to 5 times enhancement to the thermal response time of the nanotube-pNIPAM hydrogel actuators caused by the enhanced mass transport of water molecules.

View Article and Find Full Text PDF

Optical antennas have generated much interest in recent years due to their ability to focus optical energy beyond the diffraction limit, benefiting a broad range of applications such as sensitive photodetection, magnetic storage, and surface-enhanced Raman spectroscopy. To achieve the maximum field enhancement for an optical antenna, parameters such as the antenna dimensions, loading conditions, and coupling efficiency have been previously studied. Here, we present a framework, based on coupled-mode theory, to achieve maximum field enhancement in optical antennas through optimization of optical antennas' radiation characteristics.

View Article and Find Full Text PDF

A platform capable of seamlessly unifying both optoelectrowetting and optoelectronic tweezers is presented. This enables the user to manipulate aqueous droplets (with electrowetting) as well as individual particles within those droplets (with dielectrophoresis). The device requires no photolithography and droplet/particle manipulation can occur continuously over the entire surface of the device.

View Article and Find Full Text PDF

Highly regular, single-crystalline nanopillar arrays with tunable shapes and geometry are synthesized by the template-assisted vapor-liquid-solid growth mechanism. In this approach, the grown nanopillars faithfully reproduce the shape of the pores because during the growth the liquid catalyst seeds fill the space available, thereby conforming to the pore geometry. The process is highly generic for various material systems, and as an example, CdS and Ge nanopillar arrays with square, rectangular, and circular cross sections are demonstrated.

View Article and Find Full Text PDF

Optoelectronic tweezers was used to manipulate human spermatozoa to determine whether their response to OET predicts sperm viability among non-motile sperm. We review the electro-physical basis for how live and dead human spermatozoa respond to OET. The maximal velocity that non-motile spermatozoa could be induced to move by attraction or repulsion to a moving OET field was measured.

View Article and Find Full Text PDF

Optical properties of highly ordered Ge nanopillar arrays are tuned through shape and geometry control to achieve the optimal absorption efficiency. Increasing the Ge materials filling ratio is shown to increase the reflectance while simultaneously decreasing the transmittance, with the absorbance showing a strong diameter dependency. To enhance the broad band optical absorption efficiency, a novel dual-diameter nanopillar structure is presented, with a small diameter tip for minimal reflectance and a large diameter base for maximal effective absorption coefficient.

View Article and Find Full Text PDF

Optoelectronic tweezers (OET), based on light-induced dielectrophoresis, has been shown as a versatile tool for parallel manipulation of micro-particles and cells (P. Y. Chiou, A.

View Article and Find Full Text PDF

Here we report the use of optoelectronic tweezers and dynamic virtual electrodes to address multiwalled carbon nanotubes (MWCNTs) with trap stiffness values of approximately 50 fNmum. Both high-speed translation (>200 mums) of individual-MWCNTs and two-dimensional trapping of MWCNT ensembles are achieved using 100,000 times less optical power density than single beam laser tweezers. Modulating the virtual electrode's intensity enables tuning of the MWCNT ensemble's number density by an order of magnitude on the time scale of seconds promising a broad range of applications in MWCNT science and technology.

View Article and Find Full Text PDF

Optoelectronic tweezers enables parallel manipulation of individual single cells using optical addressing and optically induced dielectrophoretic force. This provides a useful platform for performing a variety of biological functions, such as cell manipulation, cell sorting, and cell electroporation. However, in order to obtain more reliable cellular manipulation, especially of adherent mammalian cells, antifouling coatings need to be used to avoid non-specific cell adherence.

View Article and Find Full Text PDF

We introduce NanoPen, a novel technique for low optical power intensity, flexible, real-time reconfigurable, and large-scale light-actuated patterning of single or multiple nanoparticles, such as metallic spherical nanocrystals, and one-dimensional nanostructures, such as carbon nanotubes. NanoPen is capable of dynamically patterning nanoparticles over an area of thousands of square micrometers with light intensities <10 W/cm(2) (using a commercial projector) within seconds. Various arbitrary nanoparticle patterns and arrays (including a 10 x 10 array covering a 0.

View Article and Find Full Text PDF

Electroporation is a common technique for the introduction of exogenous molecules across the, otherwise, impermeant cell membrane. Conventional techniques are limited by either low throughput or limited selectivity. Here we present a novel technique whereby we use patterned light to create virtual electrodes which can induce the parallel electroporation of single cells.

View Article and Find Full Text PDF

In this paper we present trap profile measurements for HeLa cells in Optoelectronic Tweezers (OET) based on a data projector. The data projector is used as a light source to illuminate amorphous Si creating virtual electrodes which are used to trap particles through dielectrophoresis. We show that although the trap stiffness is typically greater at the edges of the optical spot it is possible to create a trap with constant trap stiffness by reducing the trap's size until it is similar to the object being trapped.

View Article and Find Full Text PDF