Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure histories become increasingly complex through original and variant-adapted vaccines and infections with viral variants. Upon exposure to the highly altered Omicron spike glycoprotein, pre-immunized individuals predominantly mount recall responses of Wuhan-Hu-1 (wild-type)-imprinted memory B (B) cells mostly targeting conserved non-neutralizing epitopes, leading to diminished Omicron neutralization. We investigated the impact of imprinting in individuals double/triple vaccinated with a wild-type-strain-based mRNA vaccine who, thereafter, had two consecutive exposures to Omicron BA.
View Article and Find Full Text PDFThe SARS-CoV-2 Omicron variant and its sublineages show pronounced viral escape from neutralizing antibodies elicited by vaccination or prior SARS-CoV-2 variant infection owing to over 30-amino acid alterations within the spike (S) glycoprotein. Breakthrough infection of vaccinated individuals with Omicron sublineages BA.1 and BA.
View Article and Find Full Text PDFBNT162b2-vaccinated individuals after Omicron BA.1 breakthrough infection have strong serum-neutralizing activity against Omicron BA.1, BA.
View Article and Find Full Text PDFBackground: Despite the preclinical promise of CD40 and 4-1BB as immuno-oncology targets, clinical efforts evaluating CD40 and 4-1BB agonists as monotherapy have found limited success. DuoBody-CD40×4-1BB (GEN1042/BNT312) is a novel investigational Fc-inert bispecific antibody for dual targeting and conditional stimulation of CD40 and 4-1BB to enhance priming and reactivation of tumor-specific immunity in patients with cancer.
Methods: Characterization of DuoBody-CD40×4-1BB in vitro was performed in a broad range of functional immune cell assays, including cell-based reporter assays, T-cell proliferation assays, mixed-lymphocyte reactions and tumor-infiltrating lymphocyte assays, as well as live-cell imaging.
Immune checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 axis have changed the treatment paradigm for advanced solid tumors; however, many patients experience treatment resistance. In preclinical models 4-1BB co-stimulation synergizes with ICI by activating cytotoxic T- and NK-cell-mediated anti-tumor immunity. Here we characterize the mechanism of action of a mouse-reactive Fc-inert PD-L1×4-1BB bispecific antibody (mbsAb-PD-L1×4-1BB) and provide proof-of-concept for enhanced anti-tumor activity.
View Article and Find Full Text PDFUnlabelled: Checkpoint inhibitors (CPI) have revolutionized the treatment paradigm for advanced solid tumors; however, there remains an opportunity to improve response rates and outcomes. In preclinical models, 4-1BB costimulation synergizes with CPIs targeting the programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) axis by activating cytotoxic T-cell-mediated antitumor immunity. DuoBody-PD-L1×4-1BB (GEN1046) is an investigational, first-in-class bispecific immunotherapy agent designed to act on both pathways by combining simultaneous and complementary PD-L1 blockade and conditional 4-1BB stimulation in one molecule.
View Article and Find Full Text PDFCytoskeletal regulatory protein dysfunction has been etiologically linked to inherited diseases associated with immunodeficiency and autoimmunity, but the mechanisms involved are incompletely understood. Here, we show that conditional ablation in T cells causes severe autoimmunity associated with increased mammalian target of rapamycin (mTOR) activation and metabolic reprogramming that engender spontaneous activation and accelerated differentiation of peripheral T cells. These mice also manifest diminished antigen-specific T cell responses associated with increased inhibitory receptor expression, dysregulated mitochondrial function, and reduced cell survival upon activation.
View Article and Find Full Text PDFB7-H4, an immune suppressive member of the B7 family, is highly expressed in a wide variety of human malignancies making it an attractive immunotherapeutic target. However, the association between B7-H4 expression in the tumor microenvironment and the immune infiltrate has not been comprehensively examined. To evaluate the immune tumor microenvironment, we analyzed epithelial ovarian tumors from 28 patients using flow cytometry, immunohistochemistry, functional, and genomic analyses.
View Article and Find Full Text PDFRegulatory T (Treg) cells mainly develop within the thymus and arise from CD25Foxp3 (CD25 TregP) or CD25Foxp3 (Foxp3 TregP) Treg cell precursors resulting in Treg cells harboring distinct transcriptomic profiles and complementary T cell receptor repertoires. The stable and long-term expression of Foxp3 in Treg cells and their stable suppressive phenotype are controlled by the demethylation of Treg cell-specific epigenetic signature genes including an evolutionarily conserved CpG-rich element within the locus, the Treg-specific demethylated region (TSDR). Here we analyzed the dynamics of the imprinting of the Treg cell-specific epigenetic signature genes in thymic Treg cells.
View Article and Find Full Text PDFThe unprecedented success of immune checkpoint inhibitors has given rise to a rapidly growing number of immuno-oncology agents undergoing preclinical and clinical development and an exponential increase in possible combinations. Defining a clear rationale for combinations by identifying synergies between immunomodulatory pathways has therefore become a high priority. Immunosuppressive regulatory T cells (Tregs) within the tumor microenvironment (TME) represent a major roadblock to endogenous and therapeutic tumor immunity.
View Article and Find Full Text PDFRegulatory T (Treg) cells play crucial roles in health and disease through their immunosuppressive properties against various immune cells. In this review we will focus on the inhibitory role of Treg cells in anti-tumor immunity. We outline how Treg cells restrict T cell function based on our understanding of T cell biology, and how we can shift the equilibrium against regulatory T cells.
View Article and Find Full Text PDFRegulatory T (Treg) cells expressing the transcription factor FOXP3 are essential for the maintenance of immunologic self-tolerance but play a detrimental role in most cancers due to their ability to suppress antitumor immunity. The phenotype of human circulating Treg cells has been extensively studied, but less is known about tumor-infiltrating Treg cells. We studied the phenotype and function of tumor-infiltrating Treg cells in ovarian cancer and melanoma to identify potential Treg cell-associated molecules that can be targeted by tumor immunotherapies.
View Article and Find Full Text PDFRegulatory T cells (Tregs) are potential immunotherapeutic candidates to induce transplantation tolerance. However, stability of Tregs still remains contentious and may potentially restrict their clinical use. Recent work suggested that epigenetic imprinting of Foxp3 and other Treg-specific signature genes is crucial for stabilization of immunosuppressive properties of Foxp3+ Tregs, and that these events are initiated already during early stages of thymic Treg development.
View Article and Find Full Text PDFThe extent of TCR self-reactivity is the basis for selection of a functional and self-tolerant T cell repertoire and is quantified by repeated engagement of TCRs with a diverse pool of self-peptides complexed with self-MHC molecules. The strength of a TCR signal depends on the binding properties of a TCR to the peptide and the MHC, but it is not clear how the specificity to both components drives fate decisions. In this study, we propose a TCR signal-integration model of thymic selection that describes how thymocytes decide among distinct fates, not only based on a single TCR-ligand interaction, but taking into account the TCR stimulation history.
View Article and Find Full Text PDFRegulatory T (Treg) cells are essential for maintaining self-tolerance and modulating inflammatory immune responses. Treg cells either develop within the thymus or are converted from CD4(+) naive T (Tnaive) cells in the periphery. The Treg-cell population size is tightly controlled and Treg-cell development and homeostasis have been intensively studied; however, quantitative information about mechanisms of peripheral Treg-cell homeostasis is lacking.
View Article and Find Full Text PDFStable expression of Foxp3 in regulatory T cells (Tregs) depends on DNA demethylation at the Treg-specific demethylated region (TSDR), a conserved, CpG-rich region within the Foxp3 locus. The TSDR is selectively demethylated in ex vivo Tregs purified from secondary lymphoid organs, but it is unclear at which stage of Treg development demethylation takes place. In this study, we show that commitment to a stable lineage occurred during early stages of murine thymic Treg development by engraving of lineage-specific epigenetic marks in parallel with establishment of a Treg-specific gene expression profile.
View Article and Find Full Text PDFIn a previous study, we showed that the Ly6G(-)CD11b(+) blood monocytes residing in naïve mice are intrinsically immunosuppressive and that loss of this suppressive function may contribute to the development of autoimmunity in experimental autoimmune encephalomyelitis (EAE), a murine model of human multiple sclerosis. Here we report that mice treated with a modified superantigen coupled to myelin oligodendrocyte glycoprotein 35-55 (MOG(35-55)) peptide (DM-MOG(35-55)) suppressed the development of EAE. The treatment was associated with impaired MOG(35-55)-specific T cell proliferation and a decrease in IL-17 and IFNγ production in the draining lymph nodes.
View Article and Find Full Text PDFRegulatory T (T(reg)) cells are a unique CD4(+) T cell lineage that plays a crucial role in the maintenance of immunological tolerance. The Forkhead box transcription factor Foxp3 is critically involved in T(reg) cell development and responsible for determining the suppressive function of these cells. The majority of Foxp3(+) T(reg) cells are generated during T cell development within the thymus and show features of a stable T cell lineage.
View Article and Find Full Text PDFIn certain disease context, cells of the monocyte/macrophage lineage are known to exhibit T-cell suppressor function. However, whether naïve monocytes are also able to suppress T-cell responses has not been previously investigated. In this study, we have discovered that CD11b(+)Ly6G(-) mononuclear cells in the blood of naïve mice are potent suppressors of T-cell proliferation in vitro.
View Article and Find Full Text PDF