Publications by authors named "Aranzazu del Campo"

Living Therapeutic Materials (LTMs) are a promising alternative to polymeric drug carriers for long term release of biotherapeutics. LTMs contain living drug biofactories that produce the drug using energy sources from the body fluids. To clarify their application potential, it is fundamental to adapt biocompatibility and cytotoxicity assays applied from non-living biomaterials and therapeutics to evaluate how LTMs interact with host cells.

View Article and Find Full Text PDF

Photocrosslinkable formulations based on the radical thiol-ene reaction are considered better alternatives than methacrylated counterparts for light-based fabrication processes. This study quantifies differences between thiol-ene and methacrylated crosslinked hydrogels in terms of precursors stability, the control of the crosslinking process, and the resolution of printed features particularized for hyaluronic acid (HA) inks at concentrations relevant for bioprinting. First, the synthesis of HA functionalized with norbornene, allyl ether, or methacrylate groups with the same molecular weight and comparable degrees of functionalization is presented.

View Article and Find Full Text PDF

Side-emitting optical fibers allow light to be deliberately outcoupled along the fiber. Introducing a customized side-emission profile requires modulation of the guiding and emitting properties along the fiber length, which is a particular challenge in continuous processing of soft waveguides. In this work, it is demonstrated that multimaterial extrusion printing can generate hydrogel optical fibers with tailored segments for light-side emission.

View Article and Find Full Text PDF

The increasing prevalence of dry eye syndrome in aging and digital societies compromises long-term contact lens (CL) wear and forces users to regular eye drop instillation to alleviate discomfort. Here a novel approach with the potential to improve and extend the lubrication properties of CLs is presented. This is achieved by embedding lubricant-secreting biofactories within the CL material.

View Article and Find Full Text PDF

Natural killer (NK) cells play a vital role in eliminating tumorigenic cells. Efficient locating and killing of target cells in complex three-dimensional (3D) environments are critical for their functions under physiological conditions. However, the role of mechanosensing in regulating NK-cell killing efficiency in physiologically relevant scenarios is poorly understood.

View Article and Find Full Text PDF

Pluronic (Plu) hydrogels mixed with variable fractions of Pluronic diacrylate (PluDA) have become popular matrices to encapsulate bacteria and control their growth in engineered living materials. Here we study the rheological response of 30 wt% Plu/PluDA hydrogels with PluDA fraction between 0 and 1. We quantify the range of viscoelastic properties that can be covered in this system by varying in the PluDA fraction.

View Article and Find Full Text PDF

The hierarchical design of the toe pad surface in geckos and its reversible adhesiveness have inspired material scientists for many years. Micro- and nano-patterned surfaces with impressive adhesive performance have been developed to mimic gecko's properties. While the adhesive performance achieved in some examples has surpassed living counterparts, the durability of the fabricated surfaces is limited and the capability to self-renew and restore function-inherent to biological systems-is unimaginable.

View Article and Find Full Text PDF

Microbial biofactories allow the upscaled production of high-value compounds in biotechnological processes. This is particularly advantageous for compounds like flavonoids that promote better health through their antioxidant, anti-bacterial, anti-cancer and other beneficial effects but are produced in small quantities in their natural plant-based hosts. Bacteria like have been genetically modified with enzyme cascades to produce flavonoids like naringenin and pinocembrin from coumaric or cinnamic acid.

View Article and Find Full Text PDF

Methylsulfone derivatized poly(ethylene) glycol (PEG) macromers can be biofunctionalized with thiolated ligands and cross-linked with thiol-based cross-linkers to obtain bioactive PEG hydrogels for cell encapsulation. Methylsulfonyl-thiol (MS-SH) reactions present several advantages for this purpose when compared to other thiol-based cross-linking systems. They proceed with adequate and tunable kinetics for encapsulation, they reach a high conversion degree with good selectivity, and they generate stable reaction products.

View Article and Find Full Text PDF

In living therapeutic materials (LTMs), organisms genetically programmed to produce and deliver drugs are encapsulated in porous matrices acting as physical barriers between the therapeutic organisms and the host cells. LTMs consisting of engineered E. coli encapsulated in Pluronic F127-based hydrogels have been frequently used in LTM designs but their immunogenicity has not been tested.

View Article and Find Full Text PDF

In engineered living materials (ELMs) non-living matrices encapsulate microorganisms to acquire capabilities like sensing or biosynthesis. The confinement of the organisms to the matrix and the prevention of overgrowth and escape during the lifetime of the material is necessary for the application of ELMs into real devices. In this study, a bilayer thin film hydrogel of Pluronic F127 and Pluronic F127 acrylate polymers supported on a solid substrate is introduced.

View Article and Find Full Text PDF

Hydrogel precursors that crosslink within minutes are essential for the development of cell encapsulation matrices and their implementation in automated systems. Such timescales allow sufficient mixing of cells and hydrogel precursors under low shear forces and the achievement of homogeneous networks and cell distributions in the 3D cell culture. The previous work showed that the thiol-tetrazole methylsulfone (TzMS) reaction crosslinks star-poly(ethylene glycol) (PEG) hydrogels within minutes at around physiological pH and can be accelerated or slowed down with small pH changes.

View Article and Find Full Text PDF

The permeability of the human trabecular meshwork (HTM) regulates eye pressure via a porosity gradient across its thickness modulated by stacked layers of matrix fibrils and cells. Changes in HTM porosity are associated with increases in intraocular pressure and the progress of diseases such as glaucoma. Engineered HTMs could help to understand the structure-function relation in natural tissues and lead to new regenerative solutions.

View Article and Find Full Text PDF

Understanding cells' response to the macroscopic and nanoscale properties of biomaterials requires studies in model systems with the possibility to tailor their mechanical properties and different length scales. Here, we describe an interpenetrating network (IPN) design based on a stiff PEGDA host network interlaced within a soft 4-arm PEG-Maleimide/thiol (guest) network. We quantify the nano- and bulk mechanical behavior of the IPN and the single network hydrogels by single-molecule force spectroscopy and rheological measurements.

View Article and Find Full Text PDF

Engineered living materials (ELMs) are a new class of materials in which living organism incorporated into diffusive matrices uptake a fundamental role in material's composition and function. Understanding how the spatial confinement in 3D can regulate the behavior of the embedded cells is crucial to design and predict ELM's function, minimize their environmental impact and facilitate their translation into applied materials. This study investigates the growth and metabolic activity of bacteria within an associative hydrogel network (Pluronic-based) with mechanical properties that can be tuned by introducing a variable degree of acrylate crosslinks.

View Article and Find Full Text PDF

Despite the progress in surgical techniques and antibiotic prophylaxis, opportunistic wound infections with remain a public health problem. Secreted toxins are one of the main factors contributing to . pathogenicity.

View Article and Find Full Text PDF

Efficient wound treatments to target specific events in the healing process of chronic wounds constitute a significant aim in regenerative medicine. In this sense, nanomedicine can offer new opportunities to improve the effectiveness of existing wound therapies. The aim of this study was to develop catechol bearing polymeric nanoparticles (NPs) and to evaluate their potential in the field of wound healing.

View Article and Find Full Text PDF

Efficacy of cytotoxic T lymphocyte (CTL)-based immunotherapy is still unsatisfactory against solid tumors, which are frequently characterized by condensed extracellular matrix. Here, using a unique 3D killing assay, we identify that the killing efficiency of primary human CTLs is substantially impaired in dense collagen matrices. Although the expression of cytotoxic proteins in CTLs remained intact in dense collagen, CTL motility was largely compromised.

View Article and Find Full Text PDF

Progress in our understanding of mechanotransduction events requires noninvasive methods for the manipulation of forces at molecular scale in physiological environments. Inspired by cellular mechanisms for force application (i.e.

View Article and Find Full Text PDF

The application of growth factor based therapies in regenerative medicine is limited by the high cost, fast degradation kinetics, and the multiple functions of these molecules in the cell, which requires regulated delivery to minimize side effects. Here a photoactivatable peptidomimetic of the vascular endothelial growth factor (VEGF) that allows the light-controlled presentation of angiogenic signals to endothelial cells embedded in hydrogel matrices is presented. A photoresponsive analog of the 15-mer peptidomimetic Ac-KLTWQELYQLKYKGI-NH (abbreviated QK) is prepared by introducing a 3-(4,5-dimethoxy-2-nitrophenyl)-2-butyl (DMNPB) photoremovable protecting group at the Trp4 residue.

View Article and Find Full Text PDF

Hydrogels are widely used as hydrated matrices for cell encapsulation in a number of applications, spanning from advanced 3D cultures and tissue models to cell-based therapeutics and tissue engineering. Hydrogel formation in the presence of living cells requires cross-linking reactions that proceed efficiently under close to physiological conditions. Recently, the nucleophilic aromatic substitution of phenyl-oxadiazole (Ox) methylsulfones (MS) by thiols was introduced as a new cross-linking reaction for cell encapsulation.

View Article and Find Full Text PDF

Immune cells process a myriad of biochemical signals but their function and behavior are also determined by mechanical cues. Macrophages are no exception to this. Being present in all types of tissues, macrophages are exposed to environments of varying stiffness, which can be further altered under pathological conditions.

View Article and Find Full Text PDF

Tumor cells present profound alterations in their composition, structural organization, and functional properties. A landmark of cancer cells is an overall altered mechanical phenotype, which so far are linked to changes in their cytoskeletal regulation and organization. Evidence exists that the plasma membrane (PM) of cancer cells also shows drastic changes in its composition and organization.

View Article and Find Full Text PDF