Proteins can transform from their native state to a state having fibrillar aggregates characterized by cross β sheet structure. The fibrillar aggregates are known as amyloid and have been linked to several disorders. Disulfide bonds in proteins are one of the important factors that determine the propensity of aggregation.
View Article and Find Full Text PDFArch Biochem Biophys
February 2022
All proteins have the inherent ability to undergo transformation from their native structure to a β sheet rich fibrillar structure, called amyloid when subjected to specific conditions. Proteins with a high propensity to form amyloid fibrils have been implicated in a variety of disorders like Alzheimer's disease, Parkinson's disease, Type II diabetes, Amyotrophic Lateral Sclerosis (ALS) and prion diseases. Among the various critical factors that modulate the process of amyloid formation, disulfide bonds have been identified as one of the key determinants of amyloid propensity in proteins.
View Article and Find Full Text PDF