Publications by authors named "Aranxa Torres-Caballero"

Small molecules UM171 and SR1 have already been taken into clinically-oriented protocols for the ex vivo expansion of hematopoietic stem (HSCs) and progenitor (HPCs) cells. In order to gain further insight into their biology, in the present study we have assessed their effects, both individually and in combination, on the in vitro long-term proliferation and expansion of HSCs and HPCs contained within three different cord blood-derived cell populations: MNCs (CD34 cells = 0.8 %), LIN cells (CD34 cells = 41 %), and CD34 cells (CD34 cells >98 %).

View Article and Find Full Text PDF

The number one cause of human fetal death are defects in heart development. Because the human embryonic heart is inaccessible and the impacts of mutations, drugs, and environmental factors on the specialized functions of different heart compartments are not captured by in vitro models, determining the underlying causes is difficult. Here, we established a human cardioid platform that recapitulates the development of all major embryonic heart compartments, including right and left ventricles, atria, outflow tract, and atrioventricular canal.

View Article and Find Full Text PDF

Central nervous system tumors are the most common solid neoplasia during childhood and represent one of the leading causes of cancer-related mortality. Tumors arising from astrocytic cells (astrocytomas) are the most frequently diagnosed, and according to their histological and pathological characteristics, they are classified into four categories. However, an additional layer of molecular classification considering the DNA sequence of the tumorigenesis-associated genes and has recently been incorporated into the classification guidelines.

View Article and Find Full Text PDF

Background: Astrocytomas are cancer tumors of the central nervous system and represent the most common type of solid tumors during human childhood. In 2016, the World Health Organization established a molecular classification system to regroup tumor entities to achieve a more accurate diagnosis and a better clinical decision-making and selection of treatment in patients with these types of tumors.

Methods: We evaluated a genotyping assay for rapid and cost-effective mutation detection in astrocytomas using TaqMan probes in an asymmetric polymerase chain reaction (PCR) assay.

View Article and Find Full Text PDF