The hippocampus is a fundamental cortical structure in the memory process of encoding, retaining, and recalling information. Transcranial Magnetic Stimulation (TMS) following a Paired Associative Stimulation (PAS) enhances nervous system excitability and promotes cortical plasticity mechanisms by synchronizing two stimuli in the same neural pathway. However, PAS has not been shown to improve memorization capacity yet.
View Article and Find Full Text PDFObjective: Cortico-cortical paired associative stimulation (ccPAS) is a form of dual-site transcranial magnetic stimulation (TMS) entailing a series of single-TMS pulses paired at specific interstimulus intervals (ISI) delivered to distant cortical areas. The goal of this article is to systematically review its efficacy in inducing plasticity in humans focusing on stimulation parameters and hypotheses of underlying neurophysiology.
Methods: A systematic review of the literature from 2009-2023 was undertaken to identify all articles utilizing ccPAS to study brain plasticity and connectivity.
Transcranial Magnetic Stimulation (TMS) can be used to modulate cortico-spinal excitability following a paired associative stimulation (PAS) protocol. Movement-related cortical stimulation (MRCS) is a PAS protocol based on the synchronization of a single-pulse TMS with a movement task. However, plasticity and motor performance potentiation due to MRCS has been related exclusively to single-movement tasks.
View Article and Find Full Text PDF