Publications by authors named "Arantzazu Eiguren-Fernandez"

The ability to collect size-fractionated airborne particles that contain viable bacteria and fungi directly into liquid medium while also maintaining their viability is critical for assessing exposure risks. In this study, we present the BioCascade impactor, a novel device designed to collect airborne particles into liquid based on their aerodynamic diameter in three sequential stages (>9.74 μm, 3.

View Article and Find Full Text PDF

The size of virus-laden particles determines whether aerosol or droplet transmission is dominant in the airborne transmission of pathogens. Determining dominant transmission pathways is critical to implementing effective exposure risk mitigation strategies. The aerobiology discipline greatly needs an air sampling system that can collect virus-laden airborne particles, separate them by particle diameter, and deliver them directly onto host cells without inactivating virus or killing cells.

View Article and Find Full Text PDF

Airborne transmission of infectious (viable) SARS-CoV-2 is increasingly accepted as the primary manner by which the virus is spread from person to person. Risk of exposure to airborne virus is higher in enclosed and poorly ventilated spaces. We present a study focused on air sampling within residences occupied by individuals with COVID-19.

View Article and Find Full Text PDF

CeO and CuO nanoparticles (NPs) are used as additives in petrodiesel to enhance engine performance leading to reduced diesel combustion emissions. Despite their benefits, the additive application poses human health concerns by releasing inhalable NPs into the ambient air. In this study, a bioinspired lung cell exposure system, Dosimetric Aerosol Inhalation Device (DAVID), was employed for evaluating the toxicity of aerosolized CeO and CuO NPs with a short duration of exposure (≤10 min vs.

View Article and Find Full Text PDF

Real-time monitoring of dosimetry is critical to mitigating the constraints of offline measurements. To address this need, the use of the Scanning Mobility Particle Sizer (SMPS) to estimate the dose delivered through the Dosimetric Aerosol in Vitro Inhalation Device (DAVID) was assessed. CuO nanoparticles suspended in ethanol at different concentrations (0.

View Article and Find Full Text PDF

This study aimed to provide environmental surveillance data for evaluating the risk of acquiring SARS-CoV-2 in public areas with high foot traffic in a university. Air and surface samples were collected at a university that had the second highest number of COVID-19 cases among public higher education institutions in the U.S.

View Article and Find Full Text PDF

Fitness centers are considered high risk for SARS-CoV-2 transmission due to their high human occupancy and the type of activity taking place in them, especially when individuals pre-symptomatic or asymptomatic for COVID-19 exercise in the facilities. In this study, air (N=21) and surface (N=8) samples were collected at a fitness center through five sampling events from August to November 2020 after the reopening restrictions were lifted in Florida. The total attendance was ~2500 patrons during our air and environmental sampling work.

View Article and Find Full Text PDF

Since mask use and physical distancing are difficult to maintain when people dine indoors, restaurants are perceived as high risk for acquiring COVID-19. The air and environmental surfaces in two restaurants in a mid-scale city located in north central Florida that followed the Centers for Disease Control and Prevention (CDC) reopening guidance were sampled three times from July 2020 to February 2021. Sixteen air samples were collected for 2 hours using air samplers, and 20 surface samples by using moistened swabs.

View Article and Find Full Text PDF

Although exposure to ambient particulate matter (PM) is linked to asthma, the health effects of co-existing vapor-phase organic pollutants (vapor) and their combined effects with PM on this disease are poorly understood. We used a murine asthma model to test the hypothesis that exposure to vapor would enhance allergic sensitization and this effect would be further strengthened by co-existing PM. We found that vapor and PM each individually exerted adjuvant effects on OVA sensitization.

View Article and Find Full Text PDF

Individuals with COVID-19 are advised to self-isolate at their residences unless they require hospitalization. Persons sharing a dwelling with someone who has COVID-19 have a substantial risk of being exposed to the virus. However, environmental monitoring for the detection of virus in such settings is limited.

View Article and Find Full Text PDF

The progression of COVID-19 worldwide can be tracked by identifying mutations within the genomic sequence of SARS-CoV-2 that occur as a function of time. Such efforts currently rely on sequencing the genome of SARS-CoV-2 in patient specimens (direct sequencing) or of virus isolated from patient specimens in cell cultures. A pilot SARS-CoV-2 air sampling study conducted at a clinic within a university student health care center detected the virus vRNA, with an estimated concentration of 0.

View Article and Find Full Text PDF

In assessing the biological impact of airborne particles in vitro, air-liquid interface (ALI) exposure chambers are increasingly preferred over classical submerged exposure techniques, albeit historically limited by their inability to deliver sufficient aerosolized dose. A novel ALI system, the Dosimetric Aerosol in Vitro Inhalation Device (DAVID), bioinspired by the human respiratory system, uses water-based condensation for highly efficient aerosol deposition to ALI cell culture. Here, welding fumes (well-studied and inherently toxic ultrafine particles) were used to assess the ability of DAVID to generate toxicological responses between differing welding conditions.

View Article and Find Full Text PDF

Inhalation of aerosols containing pathogenic viruses can result in morbidity, in some cases leading to mortality. The objective of this study was to develop a model for assessing how infectious viruses might distribute in airborne particles using bacteriophage MS2 as a surrogate for human viruses. Particle deposition in the respiratory system is size-dependent, and small virus-containing particles can be inhaled deeply into the lower lungs, potentially leading to more severe respiratory disease manifestations.

View Article and Find Full Text PDF

A first-of-its-kind aerosol exposure device for toxicity testing, referred to as the Dosimetric Aerosol Inhalation Device (DAVID), was evaluated for its ability to deliver airborne nanoparticles to lung cells grown as air-liquid interface (ALI) cultures. For inhalation studies, ALI lung cell cultures exposed to airborne nanoparticles have more relevancy than the same cells exposed in submerged culture because ALI culture better represents the respiratory physiology and consequently more closely reflect cellular response to aerosol exposure. In DAVID, water condensation grows particles as small as 5 nm to droplets sized > 5 μm for inertial deposition at low flow rates.

View Article and Find Full Text PDF

The capacity of airborne particulate matter to generate reactive oxygen species (ROS) has been correlated with the generation of oxidative stress both in vitro and in vivo. The cellular damage from oxidative stress, and by implication with ROS, is associated with several common diseases, such as asthma and chronic obstructive pulmonary disease (COPD), and some neurological diseases. Yet currently available chemical and in vitro assays to determine the oxidative capacity of ambient particles require large samples, analyses are typically done offline, and the results are not immediate.

View Article and Find Full Text PDF

The dynamics and significance of aerosol transmission of respiratory viruses are still controversial, for the major reasons that virus aerosols are inefficiently collected by commonly used air samplers and that the collected viruses are inactivated by the collection method. Without knowledge of virus viability, infection risk analyses lack accuracy. This pilot study was performed to (i) determine whether infectious (viable) respiratory viruses in aerosols could be collected from air in a real world environment by the able irus erosol ampler (VIVAS), (ii) compare and contrast the efficacy of the standard bioaerosol sampler, the BioSampler, with that of the VIVAS for the collection of airborne viruses in a real world environment, and (iii) gain insights for the use of the VIVAS for respiratory virus sampling.

View Article and Find Full Text PDF

A viable virus aerosol sampler (VIVAS) effectively collected viable influenza A and B viruses from air inside a student health care center during an influenza outbreak. The viruses had "drifted" genes, showcasing the usefulness of the VIVAS for air sampling and noninvasive surveillance of viruses in circulation.

View Article and Find Full Text PDF

A versatile and compact sampling system, the Sequential Spot Sampler (S3) has been developed for pre-concentrated, time-resolved, dry collection of fine and ultrafine particles. Using a temperature-moderated laminar flow water condensation method, ambient particles as small as 6 nm are deposited within a dry, 1-mm diameter spot. Sequential samples are collected on a multiwell plate.

View Article and Find Full Text PDF

A new sampling approach has been developed to enable affordable, time-resolved monitoring of particulate chemical compositions, and more generally to provide concentrated samples of airborne particles. Using a newly developed, moderated water-based condensational growth technology, individual particle samples are deposited in a 1-mm diameter dry "spot". The moderated condensation technology enables this collection with minimal temperature rise, providing robust collection for volatile constituents.

View Article and Find Full Text PDF

Motor vehicles are a major source of polycyclic aromatic hydrocarbon (PAH) emissions in urban areas. Motor vehicle emission control strategies have included improvements in engine design, exhaust emission control, and fuel reformulation. Therefore, an updated assessment of the effects of the shifts in fuels and vehicle technologies on PAH vehicular emission factors (EFs) is needed.

View Article and Find Full Text PDF

Carbon nanotubes are difficult to aerosolize in a controlled manner. We present a method for generating aerosols not only of carbon nanotubes, but also of many reference and proprietary materials including quantum dots, diesel particulate matter, urban dust, and their mixtures, using electrospraying. This method can be used as a teaching tool, or as the starting point for advanced research, or to deliver nanomaterials in animal exposure studies.

View Article and Find Full Text PDF

Particulate matter (PM) has been the primary focus of studies aiming to understand the relationship between the chemical properties of ambient aerosols and adverse health effects. Size and chemical composition of PM have been linked to their oxidative capacity which has been postulated to promote or exacerbate pulmonary and cardiovascular diseases. But in the last few years, new studies have suggested that volatile and semi-volatile components may also contribute to many adverse health effects.

View Article and Find Full Text PDF

Numerous studies have suggested the association of reactive oxygen species (ROS) with adverse health effects derived from exposure to airborne particulate matter (PM) and diesel exhaust particles (DEP). This redox activity has been attributed to both inorganic and organic species present in these particles, but a clear distinction has not been established between the contribution of each. This article describes an application of an analytical procedure, based on the reaction of salicylic acid with hydroxyl radical to form dihydroxybenzoate (DHBA) isomers, to measure transition metal-based redox activity associated with ambient and diesel exhaust particles.

View Article and Find Full Text PDF

A mobile exposure and air pollution measurement system was developed and used for on-freeway ultrafine particle health effects studies. A nine-passenger van was modified with a high-efficiency particulate air (HEPA) filtration system that can deliver filtered or unfiltered air to an exposure chamber inside the van. State-of-the-art instruments were used to measure concentration and size distribution of fine and ultrafine particles and the concentration of carbon monoxide (CO), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (PAHs), fine particulate matter (PM2.

View Article and Find Full Text PDF