Lock-in vibrothermography has proven to be very useful to characterizing kissing cracks producing ideal, homogeneous, and compact heat sources. Here, we approach real situations by addressing the characterization of non-compact (strip-shaped) heat sources produced by open cracks and inhomogeneous fluxes. We propose combining lock-in vibrothermography data at several modulation frequencies in order to gather penetration and precision data.
View Article and Find Full Text PDFWe present a complete characterization of the width and depth of a very narrow fatigue crack developed in an Al-alloy dog bone plate using laser-spot lock-in thermography. Unlike visible micrographs, which show many surface scratches, the thermographic image clearly identifies the presence of a single crack about 1.5 mm long.
View Article and Find Full Text PDFIn this work, we have extended the front-face flash method to retrieve simultaneously the thermal diffusivity and the optical absorption coefficient of semitransparent plates. A complete theoretical model that allows calculating the front surface temperature rise of the sample has been developed. It takes into consideration additional effects, such as multiple reflections of the heating light beam inside the sample, heat losses by convection and radiation, transparency of the sample to infrared wavelengths, and heating pulse duration.
View Article and Find Full Text PDFThe flash method is the standard technique to measure the thermal diffusivity of solid samples. It consists of heating the front surface of an opaque sample by a brief light pulse and detecting the temperature evolution at its rear surface. The thermal diffusivity is obtained by measuring the time corresponding to the half maximum of the temperature rise, which only depends on the sample thickness and thermal diffusivity through a simple formula.
View Article and Find Full Text PDFPhotothermal radiometry has been widely used to measure the thermal diffusivity of bulk materials. In the case of thin plates and filaments, a one-dimensional heat propagation model including heat losses has been developed, predicting that the thermal diffusivity can be obtained by recording both the surface temperature amplitude and phase profile slopes ("slope method"). However, this method has given highly overestimated values of the thermal diffusivity of poor-conducting films and filaments.
View Article and Find Full Text PDF