Enzymatic nanomotors harvest kinetic energy through the catalysis of chemical fuels. When a drop containing nanomotors is placed in a fuel-rich environment, they assemble into ordered groups and exhibit intriguing collective behaviour akin to the bioconvection of aerobic microorganismal suspensions. This collective behaviour presents numerous advantages compared to individual nanomotors, including expanded coverage and prolonged propulsion duration.
View Article and Find Full Text PDFAs Wolbachia pipientis is more widely being released into field populations of Aedes aegypti for disease control, the ability to select the appropriate strain for differing environments is increasingly important. A previous study revealed that longer-term quiescence in the egg phase reduced the fertility of mosquitoes, especially those harboring the wAlbB Wolbachia strain. This infertility was also associated with a greater biting rate.
View Article and Find Full Text PDFPractical applications of synthetic self-propelled nano and microparticles for microrobotics, targeted drug delivery, and manipulation at the nanoscale are rapidly expanding. However, fabrication limitations often hinder progress, resulting in relatively simple shapes and limited functionality. Here, taking advantage of 3D nanoscale printing, chiral micropropellers powered by the hydrogen peroxide reduction reaction are fabricated.
View Article and Find Full Text PDFActive matter demonstrates complex spatiotemporal self-organization not accessible at equilibrium and the emergence of collective behavior. Fluids comprised of microscopic Quincke rollers represent a popular realization of synthetic active matter. Temporal activity modulations, realized by modulated external electric fields, represent an effective tool to expand the variety of accessible dynamic states in active ensembles.
View Article and Find Full Text PDFBacteria form human and animal microbiota. They are the leading causes of many infections and constitute an important class of active matter. Concentrated bacterial suspensions exhibit large-scale turbulent-like locomotion and swarming.
View Article and Find Full Text PDFSynthetic self-propelled nano and microparticles have a growing appeal for targeted drug delivery, collective functionality, and manipulation at the nanoscale. However, it is challenging to control their positions and orientations under confinement, e.g.
View Article and Find Full Text PDFThe emergence of collective motion among interacting, self-propelled agents is a central paradigm in non-equilibrium physics. Examples of such active matter range from swimming bacteria and cytoskeletal motility assays to synthetic self-propelled colloids and swarming microrobots. Remarkably, the aggregation capabilities of many of these systems rely on a theme as fundamental as it is ubiquitous in nature: communication.
View Article and Find Full Text PDFBacteria are among the oldest and most abundant species on Earth. Bacteria successfully colonize diverse habitats and play a significant role in the oxygen, carbon, and nitrogen cycles. They also form human and animal microbiota and may become sources of pathogens and a cause of many infectious diseases.
View Article and Find Full Text PDFActive matter broadly covers the dynamics of self-propelled particles. While the onset of collective behavior in homogenous active systems is relatively well understood, the effect of inhomogeneities such as obstacles and traps lacks overall clarity. Here, we study how interacting, self-propelled particles become trapped and released from a trap.
View Article and Find Full Text PDFWhereas self-propelled hard discs undergo motility-induced phase separation, self-propelled rods exhibit a variety of nonequilibrium phenomena, including clustering, collective motion, and spatio-temporal chaos. In this work, we present a theoretical framework representing active particles by continuum fields. This concept combines the simplicity of alignment-based models, enabling analytical studies, and realistic models that incorporate the shape of self-propelled objects explicitly.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2020
Active matter, both synthetic and biological, demonstrates complex spatiotemporal self-organization and the emergence of collective behavior. A coherent rotational motion, the vortex phase, is of great interest because of its ability to orchestrate well-organized motion of self-propelled particles over large distances. However, its generation without geometrical confinement has been a challenge.
View Article and Find Full Text PDFActivity and autonomous motion are fundamental in living and engineering systems. This has stimulated the new field of 'active matter' in recent years, which focuses on the physical aspects of propulsion mechanisms, and on motility-induced emergent collective behavior of a larger number of identical agents. The scale of agents ranges from nanomotors and microswimmers, to cells, fish, birds, and people.
View Article and Find Full Text PDFWe study dry, dense active nematics at both particle and continuous levels. Specifically, extending the Boltzmann-Ginzburg-Landau approach, we derive well-behaved hydrodynamic equations from a Vicsek-style model with nematic alignment and pairwise repulsion. An extensive study of the phase diagram shows qualitative agreement between the two levels of description.
View Article and Find Full Text PDFThrough billions of years of evolution, microorganisms mastered unique swimming behaviors to thrive in complex fluid environments. Limitations in nanofabrication have thus far hindered the ability to design and program synthetic swimmers with the same abilities. Here we encode multi-behavioral responses in microscopic self-propelled tori using nanoscale 3D printing.
View Article and Find Full Text PDFMucus plays crucial roles in higher organisms, from aiding fertilization to protecting the female reproductive tract. Here, we investigate how anisotropic organization of mucus affects bacterial motility. We demonstrate by cryo electron micrographs and elongated tracer particles imaging, that mucus anisotropy and heterogeneity depend on how mechanical stress is applied.
View Article and Find Full Text PDFTo navigate in complex fluid environments, swimming organisms like fish or bacteria often reorient their bodies antiparallel or against the flow, more commonly known as rheotaxis. This reorientation motion enables the organisms to migrate against the fluid flow, as observed in salmon swimming upstream to spawn. Rheotaxis can also be realized in artificial microswimmers - self-propelled particles that mimic swimming microorganisms.
View Article and Find Full Text PDFThe original version of this Article contained errors in Fig. 2. In Fig.
View Article and Find Full Text PDFActive matter is a wide class of nonequilibrium systems consisting of interacting self-propelled agents transducing the energy stored in the environment into mechanical motion. Numerous examples range from microscopic cytoskeletal filaments and swimming organisms (bacteria and unicellular algae), synthetic catalytic nanomotors, colloidal self-propelled Janus particles, to macroscopic bird flocks, fish schools, and even human crowds. Active matter demonstrates a remarkable tendency toward self-organization and development of collective states with the long-range spatial order.
View Article and Find Full Text PDFA suspension of swimming bacteria is possibly the simplest realization of active matter, i.e. a class of systems transducing stored energy into mechanical motion.
View Article and Find Full Text PDFAssemblages of self-propelled particles, often termed active matter, exhibit collective behavior due to competition between neighbor alignment and noise-induced decoherence. However, very little is known of how the quenched (i.e.
View Article and Find Full Text PDFSuspensions of motile bacteria or synthetic microswimmers, termed active matter, manifest a remarkable propensity for self-organization, and formation of large-scale coherent structures. Most active matter research deals with almost homogeneous in space systems and little is known about the dynamics of strongly heterogeneous active matter. Here we report on experimental and theoretical studies on the expansion of highly concentrated bacterial droplets into an ambient bacteria-free fluid.
View Article and Find Full Text PDFNature has amassed an impressive array of structures that afford protection from microbial colonization/infection when displayed on the exterior surfaces of organisms. Here, controlled variation of the features of mimetics derived from etched silicon allows for tuning of their antimicrobial efficacy. Materials with nanopillars up to 7 μm in length are extremely effective against a wide range of microbial species and exceed the performance of natural surfaces; in contrast, materials with shorter/blunter nanopillars (<2 μm) selectively killed specific species.
View Article and Find Full Text PDFCrawling cell motility is vital to many biological processes such as wound healing and the immune response. Using a minimal model we investigate the effects of patterned substrate adhesiveness and biophysical cell parameters on the direction of cell motion. We show that cells with low adhesion site formation rates may move perpendicular to adhesive stripes while those with high adhesion site formation rates results in motility only parallel to the substrate stripes.
View Article and Find Full Text PDFColloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2017
The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the "holy grail" of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases.
View Article and Find Full Text PDF