Publications by authors named "Aranko A"

Recombinantly produced collagens present a sustainable, ethical, and safe substitute for collagens derived from natural sources. However, controlling the folding of the recombinant collagens, crucial for replicating the mechanical properties of natural materials, remains a formidable task. Collagen-like proteins from willow sawfly are relatively small and contain no hydroxyprolines, presenting an attractive alternative to the large and post-translationally modified mammalian collagens.

View Article and Find Full Text PDF

Condensates are molecular assemblies that are formed through liquid-liquid phase separation and play important roles in many biological processes. The rational design of condensate formation and their properties is central to applications, such as biosynthetic materials, synthetic biology, and for understanding cell biology. Protein engineering is used to make a triblock structure with varying terminal blocks of folded proteins on both sides of an intrinsically disordered mid-region.

View Article and Find Full Text PDF

Manipulating protein architectures beyond genetic control has attracted widespread attention. Catcher/Tag systems enable highly specific conjugation of proteins in vivo and in vitro via an isopeptide-bond. They provide efficient, robust, and irreversible strategies for protein conjugation and are simple yet powerful tools for a variety of applications in enzyme industry, vaccines, biomaterials, and cellular applications.

View Article and Find Full Text PDF

A type of protein/peptide pair known as Catcher/Tag pair spontaneously forms an intermolecular isopeptide bond which can be applied for biomolecular click reactions. Covalent protein conjugation using Catcher/Tag pairs has turned out to be a valuable tool in biotechnology and biomedicines, but it is essential to increase the current toolbox of orthogonal Catcher/Tag pairs to expand the range of applications further, for example, for controlled multiple-fragment ligation. We report here the engineering of novel Catcher/Tag pairs for protein ligation, aided by a crystal structure of a minimal CnaB domain from Lactobacillus plantarum.

View Article and Find Full Text PDF

Phase transitions have an essential role in the assembly of nature's protein-based materials into hierarchically organized structures, yet many of the underlying mechanisms and interactions remain to be resolved. A central question for designing proteins for materials is how the protein architecture and sequence affects the nature of the phase transitions and resulting assembly. In this work, we produced 82 kDa (1×), 143 kDa (2×), and 204 kDa (3×) silk-mimicking proteins by taking advantage of protein ligation by SpyCatcher/Tag protein-peptide pair.

View Article and Find Full Text PDF

Protein trans-splicing catalyzed by split inteins has been used for segmental isotopic labeling of proteins for alleviating the complexity of NMR signals. Whereas inteins spontaneously trigger protein splicing upon protein folding, inteins from extremely halophilic organisms require a high salinity condition to induce protein splicing. We designed and created a salt-inducible intein from the widely used DnaE intein from Nostoc punctiforme by introducing 29 mutations, which required a lower salt concentration than naturally occurring halo-obligate inteins.

View Article and Find Full Text PDF

Aims: Treatment retention is associated with addiction treatment outcomes. Research regarding predictors of retention at inpatient detoxification treatment is limited. The aim of this study was to investigate whether psychosocial difficulties (PSDs) are associated with treatment retention among Finnish inpatients undergoing detoxification treatment.

View Article and Find Full Text PDF

Mutable collagenous tissues (MCTs) from echinoderms (e.g., sea stars, sea urchins) possess the remarkable ability to change their mechanical properties rapidly and reversibly thanks to the release of effector molecules regulating the number of cross-links between collagen fibrils.

View Article and Find Full Text PDF

An efficient self-cleavable purification tag could be a powerful tool for purifying recombinant proteins and peptides without additional proteolytic processes using specific proteases. Thus, the intein-mediated self-cleavage tag was developed and has been commercially available as the IMPACT™ system. However, uncontrolled cleavages of the purification tag by the inteins in the IMPACT™ system have been reported, thereby reducing final yields.

View Article and Find Full Text PDF

Protein splicing catalyzed by inteins utilizes many different combinations of amino-acid types at active sites. Inteins have been classified into three classes based on their characteristic sequences. We investigated the structural basis of the protein splicing mechanism of class 3 inteins by determining crystal structures of variants of a class 3 intein from and molecular dynamics simulations, which suggested that the class 3 intein utilizes a different splicing mechanism from that of class 1 and 2 inteins.

View Article and Find Full Text PDF

Inteins catalyze self-excision from host precursor proteins while concomitantly ligating the flanking substrates (exteins) with a peptide bond. Noncatalytic extein residues near the splice junctions, such as the residues at the -1 and +2 positions, often strongly influence the protein-splicing efficiency. The substrate specificities of inteins have not been studied for many inteins.

View Article and Find Full Text PDF
Article Synopsis
  • Sea stars use a protein-based adhesive called Sfp1 for sticking to surfaces underwater, which is cleaved into four functional subunits important for interactions.
  • The study involved producing two recombinant fragments of Sfp1 using E. coli, which were shown to self-assemble and form coatings on materials like glass and polystyrene, influenced by specific ions.
  • The coatings made from these proteins were non-toxic to HeLa cells and even promoted cell growth, suggesting they could be valuable for biomedical applications and advancing biomaterials.
View Article and Find Full Text PDF

Silk and cellulose are biopolymers that show strong potential as future sustainable materials. They also have complementary properties, suitable for combination in composite materials where cellulose would form the reinforcing component and silk the tough matrix. A major challenge concerns balancing structure and functional properties in the assembly process.

View Article and Find Full Text PDF

A central concept in molecular bioscience is how structure formation at different length scales is achieved. Here we use spider silk protein as a model to design new recombinant proteins that assemble into fibers. We made proteins with a three-block architecture with folded globular domains at each terminus of a truncated repetitive silk sequence.

View Article and Find Full Text PDF

Intervening protein sequences (inteins) from extremely halophilic haloarchaea can be inactive under low salinity but could be activated by increasing the salt content to a specific concentration for each intein. The halo-obligatory inteins confer high solubility under both low and high salinity conditions. We showed the broad utility of salt-dependent protein splicing in cis and trans by demonstrating backbone cyclization, self-cleavage for purification, and scarless protein ligation for segmental isotopic labeling.

View Article and Find Full Text PDF

Protein splicing in trans by split inteins has increasingly become a powerful protein-engineering tool for protein ligation, both in vivo and in vitro. Over 100 naturally occurring and artificially engineered split inteins have been reported for protein ligation using protein trans-splicing. Here, we review the current status of the reported split inteins in order to delineate an empirical or rational strategy for constructing new split inteins suitable for various applications in biotechnology and chemical biology.

View Article and Find Full Text PDF

Protein splicing is an autocatalytic process involving self-excision of an internal protein domain, the intein, and concomitant ligation of the two flanking sequences, the exteins, with a peptide bond. Protein splicing can also take place in trans by naturally split inteins or artificially split inteins, ligating the exteins on two different polypeptide chains into one polypeptide chain. Protein trans-splicing could work in foreign contexts by replacing the native extein sequences with other protein sequences.

View Article and Find Full Text PDF

Protein sequences are diversified on the DNA level by recombination and mutation and can be further increased on the RNA level by alternative RNA splicing, involving introns that have important roles in many biological processes. The protein version of introns (inteins), which catalyze protein splicing, were first reported in the 1990s. The biological roles of protein splicing still remain elusive because inteins neither provide any clear benefits nor have an essential role in their host organisms.

View Article and Find Full Text PDF

Unlabelled: Protein splicing in trans by split inteins has become a useful tool for protein engineering in vivo and in vitro. Inteins require Cys, Ser or Thr at the first residue of the C-terminal flanking sequence because a thiol or hydroxyl group in the side chains is a nucleophile indispensable for the trans-esterification step during protein splicing. Newly-identified distinct sequences with homology to the hedgehog/intein superfamily, called bacterial intein-like (BIL) domains, often do not have Cys, Ser, or Thr as the obligatory nucleophilic residue found in inteins.

View Article and Find Full Text PDF

Protein trans-splicing (PTS) exerted by split inteins is a protein ligation reaction which enables overcoming the barriers of conventional heterologous protein production. We provide an overview of the current state-of-the-art in split intein engineering, as well as the achievements of PTS technology in the realm of protein structure-function analyses, including incorporation of natural and artificial protein modifications, controllable protein reconstitution, segmental isotope labeling and protein cyclization. We further discuss factors crucial for the successful implementation of PTS in these protein engineering approaches, and speculate on necessary future endeavours to make PTS a universally applicable protein ligation tool.

View Article and Find Full Text PDF

Alginate epimerases are large multidomain proteins capable of epimerising C5 on beta-D-mannuronic acid (M) turning it into alpha-L-guluronic acid (G) in a polymeric alginate. Azotobacter vinelandii secretes a family of seven epimerases, each of which is capable of producing alginates with characteristic G distribution patterns. All seven epimerases consist of two types of modules, denoted A and R, in varying numbers.

View Article and Find Full Text PDF

Segmental isotopic labeling is a powerful labeling technique for reducing nuclear magnetic resonance (NMR) signal overlap, which is associated with larger proteins by incorporating stable isotopes into only one region of a protein for NMR detections. Segmental isotopic labeling can not only reduce complexities of NMR spectra but also retain possibilities to carry out sequential resonance assignments by triple-resonance NMR experiments. We described in vivo (i.

View Article and Find Full Text PDF

Background: Protein trans-splicing by naturally occurring split DnaE inteins is used for protein ligation of foreign peptide fragments. In order to widen biotechnological applications of protein trans-splicing, it is highly desirable to have split inteins with shorter C-terminal fragments, which can be chemically synthesized.

Principal Findings: We report the identification of new functional split sites in DnaE inteins from Synechocystis sp.

View Article and Find Full Text PDF

Naturally split DnaE intein from Nostoc punctiforme (Npu) has robust protein trans-splicing activity and high tolerance of sequence variations at the splicing junctions. We determined the solution structure of a single chain variant of NpuDnaE intein by NMR spectroscopy. Based on the NMR structure and the backbone dynamics of the single chain NpuDnaE intein, we designed a functional split variant of the NpuDnaE intein having a short C-terminal half (C-intein) composed of six residues.

View Article and Find Full Text PDF