Summary: The annotation of deeply sequenced, assembled transcriptomes continues to be a challenge as some of the state-of-the-art tools are slow, difficult to install, and hard to use. We have tackled these issues with TransAnnot, a fast, automated transcriptome annotation pipeline that is easy to install and use. Leveraging the fast sequence searches provided by the MMseqs2 suite, TransAnnot offers one-step annotation of homologs from Swiss-Prot, gene ontology terms and orthogroups from eggNOG, and functional domains from Pfam.
View Article and Find Full Text PDFInteractions between proteins are vital in almost all biological processes. The characterization of protein-protein interactions helps us understand the mechanistic basis of biological processes, thereby enabling the manipulation of proteins for biotechnological and clinical purposes. The interface residues of a protein-protein complex are assumed to have the following two properties: (a) they always interact with a residue of a partner protein, which forms the basis for distance-based interface residue identification methods, and (b) they are solvent-exposed in the isolated form of the protein and become buried in the complex form, which forms the basis for Accessible Surface Area (ASA)-based methods.
View Article and Find Full Text PDFMulti-protein assemblies are complex molecular systems that perform highly sophisticated biochemical functions in an orchestrated manner. They are subject to changes that are governed by the evolution of individual components. We performed a comparative analysis of the ancient and functionally conserved spliceosomal SF3b complex, to recognize molecular signatures that contribute to sequence divergence and functional specializations.
View Article and Find Full Text PDFThe evolution of homologous and functionally equivalent multiprotein assemblies is intriguing considering sequence divergence of constituent proteins. Here, we studied the implications of protein sequence divergence on the structure, dynamics and function of homologous yeast and human SF3b spliceosomal subcomplexes. Human and yeast SF3b comprise of 7 and 6 proteins respectively, with all yeast proteins homologous to their human counterparts at moderate sequence identity.
View Article and Find Full Text PDFMutations in the spike protein of SARS-CoV-2 are the major causes for the modulation of ongoing COVID-19 infection. Currently, the D614G substitution in the spike protein has become dominant worldwide. It is associated with higher infectivity than the ancestral (D614)variant.
View Article and Find Full Text PDFAfrotheria is a clade of African-origin species with striking dissimilarities in appearance and habitat. In this study, we compared whole proteome sequences of six Afrotherian species to obtain a broad viewpoint of their underlying molecular make-up, to recognize potentially unique proteomic signatures. We find that 62% of the proteomes studied here, predominantly involved in metabolism, are orthologous, while the number of homologous proteins between individual species is as high as 99.
View Article and Find Full Text PDFThe 3D structure of a protein is essential to understand protein dynamics. If experimentally determined structure is unavailable, comparative models could be used to infer dynamics. However, the effectiveness of comparative models, compared to experimental structures, in inferring dynamics is not clear.
View Article and Find Full Text PDF