Publications by authors named "Arancia G"

Previous investigations demonstrated that pretreatment with non-cytotoxic concentrations of voacamine had a chemosensitizing effect on cultured multidrug resistant osteosarcoma cells exposed to doxorubicin; whereas when used alone at high concentrations voacamine induced apoptosis-independent cell death on both sensitive and resistant cells. To gain insight into the mechanism of action of voacamine at the subcellular level, we developed an analytical high-performance thin-layer chromatography technique to assess the intracellular content of voacamine that could be correlated with the induction of cell death and consequent morphological and ultrastructural changes. The results of the quantitative analysis not only did allow us to measure both the amount of unmodified voacamine molecules (determined by the method) and the amount of molecules which reacted with cellular components (undetectable), but also to confirm the findings of our previous studies and support the validity of this method.

View Article and Find Full Text PDF

It has been confirmed that multidrug resistant (MDR) melanoma cells (M14 ADR2) are more sensitive than their wild-type counterparts (M14 WT) to H2O2 and aldehydes, the products of bovine serum amine oxidase (BSAO)-catalyzed oxidation of spermine. The metabolites formed by BSAO and spermine are more toxic, in M14 cells, than exogenous H2O2 and acrolein, even though their concentration is lower during the initial phase of incubation due to their more gradual release than the exogenous products. Binding of BSAO to the cell membrane and release of the reaction products of spermine into the immediate vicinity of the cells, or directly into the cells, may explain the apparently paradoxical phenomenon.

View Article and Find Full Text PDF

In previous studies it has been demonstrated that the plant alkaloid voacamine (1), used at noncytotoxic concentrations, enhanced the cytotoxicity of doxorubicin and exerted a chemosensitizing effect on cultured multidrug-resistant (MDR) U-2 OS-DX osteosarcoma cells. The in vitro investigations reported herein gave the following results: (i) the chemosensitizing effect of 1, in terms of drug accumulation and cell survival, was confirmed using SAOS-2-DX cells, another MDR osteosarcoma cell line; (ii) compound 1 enhanced the cytotoxic effect of doxorubicin also on the melanoma cell line Me30966, intrinsically drug resistant and P-glycoprotein-negative; (iii) at the concentrations used to sensitize tumor cells, 1 was not cytotoxic to normal cells (human fibroblasts). These findings suggest possible applications of voacamine (1) in integrative oncologic therapies against resistant tumors.

View Article and Find Full Text PDF

Scanning (SEM) and transmission electron microscopy (TEM) are two fundamental microscopic techniques widely applied in biological research for the study of ultrastructural cell components. With these methods, especially TEM, it is possible to detect and quantify the morphological and ultrastructural parameters of intracellular organelles (mitochondria, Golgi apparatus, lysosomes, peroxisomes, endosomes, endoplasmic reticulum, cytoskeleton, nucleus, etc.) in normal and pathological conditions.

View Article and Find Full Text PDF

In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding.

View Article and Find Full Text PDF

Few articles in the literature have focused on electroporation as a strategy to reverse multidrug resistance (MDR) of tumour cells and they are mostly limited to the improved efficacy of bleomycin. We tested the application of trains of biphasic pulses to cell suspensions and to murine xenografts as a strategy to increase the uptake of doxorubicin (DOX) and to enhance its cytotoxicity against chemoresistant cells. The human colon adenocarcinoma cell line LoVo DX, expressing MDR phenotype with high levels of P-glycoprotein (P-gp), has been used.

View Article and Find Full Text PDF

We have previously shown that cancer cells can protect themselves from apoptosis induced by type I interferons (IFNs) through a ras→MAPK-mediated pathway. In addition, since IFN-mediated signalling components STATs are controlled by PPAR gamma we studied the pharmacological interaction between recombinant IFN-β and the PPAR-γ agonist troglitazone (TGZ). This combination induced a synergistic effect on the growth inhibition of BxPC-3, a pancreatic cancer cell line, through the counteraction of the IFN-β-induced activation of STAT-3, MAPK and AKT and the increase in the binding of both STAT-1 related complexes and PPAR-γ with specific DNA responsive elements.

View Article and Find Full Text PDF

The plasma membrane lipid composition in AH-130 hepatoma cells was found to change remarkably after polyenylphosphatidylcholine (PPC) treatment. Plasma membranes from cells grown in rats treated for 7 days i.v.

View Article and Find Full Text PDF

Autophagy is a catabolic process whereby cells maintain homeostasis by eliminating unnecessary proteins and damaged organelles. It may be triggered under physiological conditions, such as nutrient starvation, or in response to a variety of stress stimuli, such as exposure to radiations or cytotoxic compounds. Although autophagy is basically a protective mechanism that sustains cell survival under adverse conditions, it has been recently demonstrated that the induction of autophagic process may ultimately lead to cell death.

View Article and Find Full Text PDF

Engineered nanoparticles offer great promise in many industrial and biomedical applications, however little information is available about gastrointestinal toxicity. The purpose of this study was to assess the cytotoxicity, oxidative stress, apoptosis and proinflammatory mediator release induced by ZnO nanoparticles on human colon carcinoma LoVo cells. The biological activity of these particles was related to their physico-chemical characteristics.

View Article and Find Full Text PDF

The pathogenesis of Legionella pneumophila mainly resides in its ability to inhibit the phagosome-lysosome fusion, which normally prevents the killing of the host cells. In order to characterize the molecular alterations that occurred in a spontaneous avirulent mutant of Legionella pneumophila serogroup 6, named Vir-, we investigated the ability of the mutant to adhere to and multiply in the WI26VA4 alveolar epithelial cell line and in human macrophages, when compared to its parental strain, Vir+. We also determined the colocalization of bacteria with LAMP-1 to gain an insight into the phagosome-lysosome fusion process.

View Article and Find Full Text PDF

It has been confirmed that multidrug resistant (MDR) human melanoma cells are more sensitive than their wild-type counterparts to H2O2 and aldehydes, the products of bovine serum amine oxidase (BSAO)-catalyzed oxidation of spermine. The metabolites formed by BSAO and spermine are more toxic than exogenous H2O2 and acrolein, even though their concentration is lower during the initial phase of incubation due to their more gradual release than the exogenous products. Both wild-type and MDR cells, after pre-treatment with MDL 72527, an inactivator of polyamine oxidase and a lysosomotropic compound, show to be sensitized to subsequent exposure to BSAO/spermine.

View Article and Find Full Text PDF

This study reports the synthesis of a number of 1- and 2-phenyl derivatives of the 1,4-dihydrobenzothiopyrano[4,3-c]pyrazole nucleus, which were obtained by the reaction of the versatile 7-substituted 2,3-dihydro-3-hydroxymethylene-4H-1-benzothiopyran-4-ones with hydrazine and substituted phenylhydrazines. The antiproliferative activity of the synthesized compounds was evaluated by an in vitro assay on human tumor cell lines (HL-60 and HeLa) and showed a significant capacity of the 7-methoxy-substituted benzothiopyrano[4,3-c]pyrazoles 3b-d, carrying the pendant phenyl group in the 1-position, to inhibit cell growth. Investigation of the mechanism of action indicated the induction of the mitochondrial permeability transition (MPT) as the molecular event responsible for the inhibition of cell growth.

View Article and Find Full Text PDF

The unresponsiveness of multidrug resistant tumor cells to antineoplastic chemotherapy is often associated with reduced cellular drug accumulation accomplished by overexpressed transport molecules. Moreover, intracellular drug distribution in resistant cells appears to be remarkably different when compared to their wild type counterparts. In the present paper, we report observations on the intracellular accumulation and distribution of doxorubicin, an antitumoral agent widely employed in chemotherapy, in sensitive and resistant cultured tumor cells.

View Article and Find Full Text PDF

In our previous studies, the bisindolic alkaloid voacamine (VOA), isolated from the plant Peschiera fuchsiaefolia, proved to exert a chemosensitizing effect on cultured multidrug resistant (MDR) osteosarcoma cells exposed to doxorubicin (DOX). In particular, VOA was capable of inhibiting P-glycoprotein action in a competitive way, thus explaining the enhancement of the cytotoxic effect induced by DOX on MDR cells. Afterwards, preliminary observations suggested that such an enhancement did not involve the apoptotic process but was due instead to the induction of autophagic cell death.

View Article and Find Full Text PDF

The relationship between microtubular dynamics, dismantling of pericentriolar components and induction of apoptosis was analysed after exposure of H460 non-small lung cancer cells to anti-mitotic drugs. The microtubule destabilising agent, combretastatin-A4 (CA-4) led to microtubular array disorganization, arrest in mitosis and abnormal metaphases, accompanied by the presence of numerous centrosome-independent "star-like" structures containing tubulin and aggregates of pericentrosomal matrix components like gamma-tubulin, pericentrin and ninein, whereas the structural integrity of centrioles was not affected by treatment. On the contrary, in condition of prolonged exposure or high concentrations of CA-4 such aggregates never formed.

View Article and Find Full Text PDF

Malignant gliomas, with an incidence of 5 cases per 100,000 population per year, represent the most common primary brain tumour. They have an overall survival length of less than 2 years. Many different adjuvant therapies have been developed.

View Article and Find Full Text PDF

Mitochondrial tyrosine phosphorylation is emerging as an important mechanism in regulating mitochondrial function. This article, aimed at identifying which kinases are the major agents in mitochondrial tyrosine phosphorylation, shows that this role should be attributed to Src family members. Indeed, various members of this family, for example, Fgr, Fyn, Lyn, c-Src, are constitutively present in the internal structure of mitochondria as well as Csk, a key enzyme in the regulation of the activity of this family.

View Article and Find Full Text PDF

Our previous studies demonstrated that Mycobacterium bovis bacillus Calmette-Guérin (BCG) can directly interact with human NK cells and induce the proliferation, gamma interferon production, and cytotoxic activity of such cells without the need for accessory cells. Thus, the aim of the present study was to identify the putative receptor(s) responsible for the recognition of BCG by human NK cells and potentially involved in the activation of NK cells. To this end, we first investigated the surface expression of three NK cell-activating receptors belonging to the natural cytoxicity receptor (NCR) family on highly purified human NK cells upon in vitro direct stimulation with BCG.

View Article and Find Full Text PDF

The PE family of Mycobacterium tuberculosis includes 98 proteins which share a highly homologous N-terminus sequence of about 110 amino acids (PE domain). Depending on the C-terminal domain, the PE family can be divided in three subfamilies, the largest of which is the PE_PGRS with 61 members. In this study, we determined the cellular localization of three PE proteins by cell fractionation and immunoelectron microscopy by expressing chimeric epitope-tagged recombinant proteins in Mycobacterium smegmatis.

View Article and Find Full Text PDF

Malignant melanoma shows high levels of intrinsic drug resistance associated with a highly invasive phenotype. In this study, we investigated the role of the drug transporter P-glycoprotein (Pgp) in the invasion potential of drug-sensitive (M14 WT, Pgp-negative) and drug-resistant (M14 ADR, Pgp-positive) human melanoma cells. Coimmunoprecipitation experiments assessed the association of Pgp with the adhesion molecule CD44 in multidrug resistant (MDR) melanoma cells, compared with parental ones.

View Article and Find Full Text PDF

Electroporation (EP) has been widely employed in the past years as a safe and effective technique to drive drugs and DNA plasmids into target cells both for experimental and therapeutic purposes. Despite the large bulk of literature on this topic, often describing successful outcomes, there is a lack of knowledge about the intimate mechanism(s) controlling this phenomenon. In this paper, we describe a number of ultrastructural alterations in the cellular membranes following the exposure of orthotopic melanomas and red blood cells to trains of biphasic pulses.

View Article and Find Full Text PDF

Objective: CD14(+) monocyte cell lines can differentiate into an osteoclast (OC)-like lineage. However, the identification of human cell lines with stem cell characteristics, capable of differentiating into OCs, would provide a tool for the study of the molecular mechanisms regulating their commitment, differentiation, and function. Since the human acute myeloid leukemia cell line MUTZ-3 contains both CD34(+) stem cell and CD14(+) cell populations, we investigated the capacity of the stem/progenitor CD34(+) population to differentiate into functional OCs.

View Article and Find Full Text PDF

Malignant gliomas represent the most common primary brain tumor: more than 50% of them are glioblastoma multiforme (GBM). Photodynamic therapy may offer a very good chance of targeted destruction of infiltrating GBM cells, thus increasing the survival time and recurrence-free interval of GBM patients. Among photosensitizing agents, meta-tetrahydroxyphenylchlorin (m-THPC) is promising for the treatment of brain tumors.

View Article and Find Full Text PDF

In tumours, polyamines and amine oxidases increase as compared to normal tissues. Cytotoxicity induced by bovine serum amine oxidase (BSAO) and spermine is attributed to H2O2 and aldehydes produced by the reaction. Increasing the incubation temperature from 37 to 42 degrees C enhances cytotoxicity in cells exposed to spermine metabolites.

View Article and Find Full Text PDF