Despite their excellent performance and versatility, the efficient integration of small lasers with other optical devices has long been hindered by their broad emission divergence. In this study, we introduce a novel approach for emission engineering in microdisk lasers, significantly enhancing their vertical emission output by directly integrating specially designed reflective metalenses, referred to as "meta-micromirrors". A 5 μm-diameter microdisk laser is precisely positioned at an 8 μm focal distance on a 30 × 30 μm meta-micromirror featuring a numerical aperture (NA) of 0.
View Article and Find Full Text PDFWhile there have been notable advancements in Si-based optical integration, achieving compact and efficient continuous-wave (CW) III-V semiconductor nanolasers on Si at room temperature remains a substantial challenge. This study presents an innovative approach: the on-demand minimal-gain-printed Si nanolaser. By using a carefully designed minimal III-V optical gain structure and a precise on-demand gain-printing technique, we achieve lasing operation with superior spectral stability under pulsed conditions and observe a strong signature of CW operation at room temperature.
View Article and Find Full Text PDFMetasurface technology is revolutionizing the field of optics and pursuing expanded functions via technical developments, such as the integration of multiple metasurfaces with optical fibers. Despite several attempts to realize metasurface-on-fiber platforms, negligible fiber-facet areas pose a serious obstacle to efficient and precise fabrication. Herein, we demonstrate a novel sequential micro-punching process that enables rapid and precise stacking of multiple polymer metasurfaces on the end face of a single-mode optical fiber.
View Article and Find Full Text PDF