Glioblastoma recruits various nontransformed cells from distant tissues. Although bone marrow-derived mesenchymal stem cells (MSCs) have been observed migrating to glioblastoma, the underlying mechanism driving MSC migration toward glioblastoma remains unclear. Tumor vascularity is critical in the context of recurrent glioblastoma and is closely linked to the expression of stromal cell-derived factor-1 (SDF-1).
View Article and Find Full Text PDFMesenchymal stem cells are recruited from the bone marrow into breast tumors, contributing to the creation of a tumor microenvironment that fosters tropism for breast tumors. However, the intrinsic mechanisms underlying the recruitment of bone marrow-derived mesenchymal stem cells (MSCs) into the breast tumor microenvironment are still under investigation. Our discoveries identified zonula occludens-1 (ZO-1) as a specific intrinsic molecule that plays a vital role in mediating the collective migration of MSCs towards breast tumor cells and transforming growth factor beta (TGF-β), which is a crucial factor secreted by breast tumor cells.
View Article and Find Full Text PDFBreast tumor cells recruit bone marrow-derived mesenchymal stem cells (BM-MSCs) and alter their cellular characteristics to establish a tumor microenvironment. BM-MSCs enhance tumor angiogenesis through various mechanisms. We investigated the mechanisms by which BM-MSCs promote angiogenesis in response to breast tumor.
View Article and Find Full Text PDFThe prostate tumor microenvironment plays important roles in the metastasis and hormone-insensitive re-growth of tumor cells. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are recruited into prostate tumors to facilitate tumor microenvironment formation. However, the specific intrinsic molecules mediating BM-MSCs' migration to prostate tumors are unknown.
View Article and Find Full Text PDFCancer cachexia is a multifactorial systemic inflammation disease caused by complex interactions between the tumor and host tissues via soluble factors. However, whether cancer cachexia affects the bone marrow, in particular the hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), remains unclear. Here, we investigated the bone marrow and bone in a cancer cachexia animal model generated by transplanting Lewis lung carcinoma cells.
View Article and Find Full Text PDFEndogenous bone marrow-derived mesenchymal stem cells are mobilized to peripheral blood and injured tissues in response to changes in the expression of various growth factors and cytokines in the injured tissues, including substance P (SP), transforming growth factor-beta (TGF-β), and stromal cell-derived factor-1 (SDF-1). SP, TGF-β, and SDF-1 are all known to induce the migration of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, it is not yet clear how these stimuli influence or interact with each other during BM-MSC mobilization.
View Article and Find Full Text PDFBone morphogenetic protein (BMP) signaling and Notch signaling play important roles in tumorigenesis in various organs and tissues, including the breast. BMP-4 enhanced epithelial mesenchymal transition (EMT) and stem cell properties in both mammary epithelial cell line and breast carcinoma cell line. BMP-4 increased the expression of EMT biomarkers, such as fibronectin, laminin, N-cadherin, and Slug.
View Article and Find Full Text PDF