Publications by authors named "Aran J"

Progressive respiratory airway destruction due to unresolved inflammation induced by periodic infectious exacerbation episodes is a hallmark of cystic fibrosis (CF) lung pathology. To clear bacteria, neutrophils release high amounts of reactive oxygen species (ROS), which inflict collateral damage to the neighboring epithelial cells causing oxidative stress. A former genome-wide small interfering RNA (siRNA) screening in CF submucosal gland cells, instrumental for mucociliary clearance, proposed tumor necrosis factor receptor superfamily member 1B (; ) as a potential hit involved in oxidative stress susceptibility.

View Article and Find Full Text PDF

The most recent and promising therapeutic strategies for inflammatory bowel disease (IBD) have engaged biologics targeting single effector components involved in major steps of the immune-inflammatory processes, such as tumor necrosis factor, interleukins or integrins. Nevertheless, these molecules have not yet met expectations regarding efficacy and safety, resulting in a significant percentage of refractory or relapsing patients. Thus, novel treatment options are urgently needed.

View Article and Find Full Text PDF

C4b-binding protein (C4BP) is a well-known regulator of the complement system that holds additional and important activities unrelated to complement inhibition. Recently, we have described a novel immunomodulatory activity in the minor C4BP(β-) isoform directly acting over inflammatory phagocytes. Here we show that incorporation of the β-chain to the C4BP α-chain oligomer interferes with this immunomodulatory activity of C4BP.

View Article and Find Full Text PDF

Recurrent infection-inflammation cycles in cystic fibrosis (CF) patients generate a highly oxidative environment, leading to progressive destruction of the airway epithelia. The identification of novel modifier genes involved in oxidative stress susceptibility in the CF airways might contribute to devise new therapeutic approaches. We performed an unbiased genome-wide RNAi screen using a randomized siRNA library to identify oxidative stress modulators in CF airway epithelial cells.

View Article and Find Full Text PDF

Non-coding RNAs (ncRNAs) are emerging therapeutic tools but there are barriers to their translation to clinical practice. Key issues concern the specificity of the targets, the delivery of the molecules, and their stability, while avoiding "on-target" and "off-target" side effects. In this "ncRNA in therapeutics" issue, we collect several studies of the differential expression of ncRNAs in cardiovascular diseases, bone metabolism-related disorders, neurology, and oncology, and their potential to be used as biomarkers or therapeutic targets.

View Article and Find Full Text PDF

The co-stimulatory molecule CD40 and its ligand CD40L play a key role in the regulation of immunological processes and are involved in the pathophysiology of autoimmune and inflammatory diseases. Inhibition of the CD40-CD40L axis is a promising therapy, and a number of strategies and techniques have been designed to hinder its functionality. Our group has broad experience in silencing CD40 using RNAi technology, and here we summarize protocols for the systemic administration of a specific anti-CD40 siRNA in different rodents models, in addition to the subsequent quantification of CD40 expression in murine kidneys by immunostaining.

View Article and Find Full Text PDF

Systemic lupus erythematosus is a highly complex and heterogeneous autoimmune disease mostly mediated by B cells. It is characterized by circulating self-reactive antibodies that deposit and form immune complexes in kidney, leading to irreparable tissue damage and resulting in lupus nephritis. In a New Zealand Black X New Zealand White F1 mouse model, we tested two different small interfering RNA (siRNA) silencing treatments against interferon regulatory factor 5 (IRF5) and B cell-activating factor (BLYSS) expression and their combination in a second set of animals.

View Article and Find Full Text PDF

As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees.

View Article and Find Full Text PDF

Since the Great Oxidation Event, about 2.4 billion years ago, the Earth is immersed in an oxidizing atmosphere. Thus, it has been proposed that excess oxygen, originally a waste product of photosynthetic cyanobacteria, induced oxidative stress and the production of reactive oxygen species (ROS), which have since acted as fundamental drivers of biologic evolution and eukaryogenesis.

View Article and Find Full Text PDF

Lupus nephritis is a chronic autoimmune-inflammatory condition that can lead to end-stage kidney disease. Presently available immunosuppressive treatments for lupus nephritis are suboptimal and can induce significant side effects. Recently, we characterized a novel immunomodulatory activity of the minor isoform of the classical pathway complement inhibitor, C4BP(β-).

View Article and Find Full Text PDF

Objective: Carotid artery atherosclerosis is a major cause of ischemic stroke. However, reliable criteria to identify patients with high-risk carotid plaques beyond the severity of stenosis are still lacking. Circulating microRNAs (miRNAs) are being postulated as biomarkers for a variety of vascular immune-inflammatory diseases.

View Article and Find Full Text PDF

The acute phase response is generated by an overwhelming immune-inflammatory process against infection or tissue damage, and represents the initial response of the organism in an attempt to return to homeostasis. It is mediated by acute phase proteins (APPs), an assortment of highly conserved plasma reactants of seemingly different functions that, however, share a common protective role from injury. Recent studies have suggested a crosstalk between several APPs and the mononuclear phagocyte system (MPS) in the resolution of inflammation, to restore tissue integrity and function.

View Article and Find Full Text PDF

Complement and dendritic cells (DCs) share many functional features that drive the outcome of immune-inflammatory processes. Both have a sentinel function, acting as danger sensors specialized for a rapid, comprehensive and selective action against potential threats without damaging the healthy host cells. But while complement has been considered as a "master alarm" system poised for direct pathogen killing, DCs are regarded as "master regulators" or orchestrators of a vast range of effector immune cells for an effective immune response against threatening insults.

View Article and Find Full Text PDF

The activation of the complement system is a key initiating step in the protective innate immune-inflammatory response against injury, although it may also cause harm if left unchecked. The structurally related soluble complement inhibitors C4b-binding protein (C4BP) and factor H (FH) exert a tight regulation of the classical/lectin and alternative pathways of complement activation, respectively, attenuating the activity of the C3/C5 convertases and, consequently, avoiding serious damage to host tissues. We recently reported that the acute-phase C4BP isoform C4BP lacking the β-chain plays a pivotal role in the modulation of the adaptive immune responses.

View Article and Find Full Text PDF

Background: The role of cytokines in establishing specific transcriptional programmes in innate immune cells has long been recognized. However, little is known about how these extracellular factors instruct innate immune cell epigenomes to engage specific differentiation states. Human monocytes differentiate under inflammatory conditions into effector cells with non-redundant functions, such as dendritic cells and macrophages.

View Article and Find Full Text PDF

Ischemia-reperfusion occurs in a great many clinical settings and contributes to organ failure or dysfunction. CD154-CD40 signaling in leukocyte-endothelial cell interactions or T-cell activation facilitates tissue inflammation and injury. Here we tested a siRNA anti-CD40 in rodent warm and cold ischemia models to check the therapeutic efficacy and anti-inflammatory outcome of in vivo gene silencing.

View Article and Find Full Text PDF

To assess the usefulness of circulating microRNAs (miRNAs) as non-invasive molecular biomarkers for early prediction of preeclampsia, a differential miRNA profiling analysis was performed in first-trimester pooled sera from 31 early preeclampsia patients, requiring delivery before 34 weeks of gestation, and 44 uncomplicated pregnancies using microfluidic arrays. Among a total of 754 miRNAs analyzed, the presence of 63 miRNAs (8%) was consistently documented in the sera from preeclampsia and control samples. Nevertheless, only 15 amplified miRNAs (2%) seemed to be differentially, although modestly, represented (fold change range: 0.

View Article and Find Full Text PDF

Occupational asthma (OA) is characterized by allergic airway inflammation and hyperresponsiveness, leading to progressive airway remodeling and a concomitant decline in lung function. The management of OA remains suboptimal in clinical practice. Thus, establishing effective therapies might overcome the natural history of the disease.

View Article and Find Full Text PDF

Lupus nephritis (LN) is an autoimmune disorder in which co-stimulatory signals have been involved. Here we tested a cholesterol-conjugated-anti-CD40-siRNA in dendritic cells (DC) in vitro and in a model of LPS to check its potency and tissue distribution. Then, we report the effects of Chol-siRNA in an experimental model of mice with established lupus nephritis.

View Article and Find Full Text PDF

The Fourth Expert Meeting of the Mesenchymal Stem Cells in Solid Organ Transplantation (MiSOT) Consortium took place in Barcelona on October 19 and 20, 2012. This meeting focused on the translation of preclinical data into early clinical settings. This position paper highlights the main topics explored on the safety and efficacy of mesenchymal stem cells as a therapeutic agent in solid organ transplantation and emphasizes the issues (proper timing, concomitant immunossupression, source and immunogenicity of mesenchymal stem cells, and oncogenicity) that have been addressed and will be followed up by the MiSOT Consortium in future studies.

View Article and Find Full Text PDF

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by pulmonary edema attributable to alveolar epithelial-interstitial-endothelial injury, associated with profound inflammation and respiratory dysfunction. The IL-33/IL-1 receptor-like-1 (ST2) axis plays a key role in the development of immune-inflammatory responses in the lung. Cell-based therapy has been recently proposed as an effective alternative for the treatment of ALI and ARDS.

View Article and Find Full Text PDF

The classical pathway complement regulator C4b-binding protein (C4BP) is composed of two polypeptides (α- and β-chains), which form three plasma oligomers with different subunit compositions (α7β1, α7β0, and α6β1). We show in this article that the C4BP α7β0 isoform (hereafter called C4BP[β(-)] [C4BP lacking the β-chain]), overexpressed under acute-phase conditions, induces a semimature, tolerogenic state on human monocyte-derived dendritic cells (DCs) activated by a proinflammatory stimulus. C4BP isoforms containing β-chain (α7β1 and α6β1; C4BP[β(+)]) neither interfered with the normal maturation of DCs nor competed with C4BP(β(-)) activity on these cells.

View Article and Find Full Text PDF

Due to their favorable intrinsic features, including engraftment, differentiation, and immunomodulatory potential, adult mesenchymal stem cells (MSCs) have been proposed for therapeutic in utero intervention. Further improvement of such attributes for particular diseases might merely be achieved by ex vivo MSC genetic engineering previous to transplantation. Here, we evaluated for the first time the feasibility, biodistribution, long-term engraftment, and transgenic enhanced green fluorescent protein (EGFP) expression of genetically engineered human adipose tissue-derived MSCs (EGFP(+)-ASCs) after intra-amniotic xenotransplantation at E17 of gestation into our validated pregnant rabbit model.

View Article and Find Full Text PDF

The Sonic Hedgehog (Hh) pathway has been implicated in the maintenance of stem or progenitor cells in many adult tissues. Importantly, abnormal Hh pathway activation is also associated with initiation of neoplasia, but its role in tumor growth is still unclear. Here, we demonstrate that cyclopamine, a plant-derived alkaloid product used to inhibit the Hh signaling pathway, reduces the Side Population (SP) obtained by Hoechst 33342 (Ho342) dye measurements.

View Article and Find Full Text PDF

Prenatal transplantation of genetically engineered mesenchymal stem cells (MSCs) might benefit prevention or treatment of early-onset genetic disorders due to the cells' intrinsic regenerative potential plus the acquired advantage from therapeutic transgene expression. However, a thorough assessment of the safety, accessibility, and behavior of these MSCs in the fetal environment using appropriate animal models is required before we can advance toward a clinical application. We have recently shown that fetal rabbit liver MSCs (fl-MSCs) have superior growth rate, clonogenic capability, and in vitro adherence and differentiation abilities compared with adult rabbit bone marrow MSCs.

View Article and Find Full Text PDF