Publications by authors named "Aram Rezaei"

Article Synopsis
  • A new magnetic and pH-responsive nanocarrier was created to deliver curcumin (CUR) specifically to breast cancer cells, using a combination of natural and synthetic polymers.
  • The nanocarrier, called CuFeO@PMAA@Lig-ADH, has a spherical shape with a diameter of about 15 nm and shows good magnetic responsiveness and pH-dependent drug release.
  • In laboratory tests, this nanocarrier significantly reduced the survival of breast cancer cells (MCF-7), with effective IC values indicating strong cytotoxic effects, while also showing high intracellular uptake of the nanoparticles.
View Article and Find Full Text PDF

Salivary oligomeric α-synuclein (α-Syn) has been introduced as a promising biomarker for the diagnosis of Parkinson's disease. Herein, a fluorescence sensor array based on three carbon quantum dots (CQDs) with different surface functional groups was developed for the identification and quantification of salivary α-Syn oligomers. Each of the CQDs generated a different fluorescence response to the target analyte, and the responses were analyzed by NPLS-DA to create a unique response pattern for the target analyte.

View Article and Find Full Text PDF

Excessive Cu intake can cause neurological disorders (e.g. Wilson's disease) and adversely affect the gastrointestinal, liver, and kidney organs.

View Article and Find Full Text PDF

Despite of growing interest in use of carbon-based nanomaterials as carriers of functional proteins, less attention has been paid to the effects of these nanomaterials on the structure and function of the proteins. In this study, with the aim of shedding light on the mechanisms of interaction between carbon-based nanomaterials and proteins, the interactions of carbon quantum dots (CQDs) containing amine (CQD-NH) or carboxyl groups (CQD-COOH) with Photinus pyralis firefly luciferase enzyme were investigated by experimental and computational approaches. The structural changes and reduction in activity of the luciferase upon treatment with CQDs were experimentally proved.

View Article and Find Full Text PDF

Over the past decade, CdS QDs have become versatile semiconductors. Surface modification of CdS QDs has become an interesting case study, as it can eliminate surface defects and improve their photochemical properties. In this study, we report a new strategy of using carbon quantum dots containing a large number of thiol groups (CQDs-SH) as a passivating agent for the stabilization of CdS quantum dots (QDs).

View Article and Find Full Text PDF

This study presents a novel class of pseudohomogeneous catalysts (PHC) based on carbon quantum dots functionalized with terpyridine ligands (CQDs-Tpy) to immobilize and stabilize palladium nanoparticles (Pd NPs). Extensive characterization techniques clearly confirmed the successful stabilization of Pd NPs on CQDs-Tpy. The effectiveness of the catalyst was demonstrated in the selective aerobic oxidation of primary and secondary of benzylic alcohols to aldehydes in the absence of additives and phase transfer catalyst (PTC).

View Article and Find Full Text PDF

The term "chiral pseudohomogeneous catalyst (PHC)" denotes a novel concept that characterizes subnanometric particles exhibiting atomic-level chirality. The PHC based on chiral amphiphilic carbon quantum dots possesses distinctive features that combine the strengths of both homogeneous and heterogeneous catalysts, thereby heralding a significant breakthrough in the fields of asymmetric synthesis and medicinal chemistry. To the best of our knowledge, this is the first and the only reported research of a chiral PHC that demonstrates exceptional performance in controlling the enantioselectivity of the Kharasch-Sosnovsky reaction, yielding the corresponding products in high conversion (95%) with a moderate enantiomeric excess (75%).

View Article and Find Full Text PDF

In this study, two novel biomimetic modular peptide motifs based on the - of type collagen (CO4A2) were designed and immobilized on a graphene platform to imitate integrin and heparan sulfate- (HS-) binding proteins. The study was used to design 9-mer K[KGDRGD]AG and 10-mer KK[SGDRGD]AG for testing designed Integrin-Binding Peptide (dIBP) and HS-Binding Peptide (dHBP). The virtual docking technique was used to optimize the peptide motifs and their relevant receptors.

View Article and Find Full Text PDF

The attachment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike to angiotensin-converting enzyme 2 (ACE-2) leads the cell fusion process, so spike blockade may be a promising therapy combating COVID-19. Bee pollen bioflavonoids with intrinsic bioactivities are of outmost importance to block SARS-CoV-2-ACE-2 interaction. Herein, we conducted a molecular docking assessment through natural phenolics/non-phenolics of pollen to investigate their affinity against SARS-CoV-2 spike.

View Article and Find Full Text PDF

In the present study, a green and ecofriendly nanocatalyst was synthesized through functionalization of 2,4,6-trichloro-1,3,5-triazine (TCT) and mesalamine on silica-coated magnetic nanoparticles (MNPs), then coordination with Cu without agglomeration, consecutively. The silica-coated MNPs functionalized with the Cu(*II)-mesalamine complex was (FeO@SiO@NH-TCT-mesalamine-Cu(II) MNPs) completely characterized by FT-IR, XRD, EDX, FESEM, TEM, VSM, TGA, and BET analyses. Afterward, the activity of the novel catalyst was investigated in the synthesis of chromene heterocycles, which were an important group of organic compounds.

View Article and Find Full Text PDF

The idea of applying ultrasound (US) as a green activation method in chemical transformations, especially in catalytic alcohol oxidations, technically and ecologically appeals to chemists. In the present work, as an attempt to fulfill the idea of designing an eco-friendly system to oxidize alcoholic substrates into corresponding aldehydes, we developed multifunctional tungstate-decorated CQD base catalyst, A-CQDs/W, and examined its sonooxidation performance in presence of HO as a green oxidant in aqua media. By comparing the catalyst performance in oxidize benzyl alcohol as a testing model to benzaldehyde (BeOH) prior and after US irradiation-trace vs 93%- the key role of ultrasonic irradiation in achieving high yield is completely appreciated.

View Article and Find Full Text PDF

An efficient and heterogeneous novel magnetic silica-coated picolylaminecopper complex [FeO@SiO@GP/Picolylamine-Cu(II)] was synthesized, characterized, and employed as a magnetically recoverable nanocatalyst in Biginelli condensation for the preparation of biologically active 3,4-dihydropyrimidinones. FeO@SiO@GP/Picolylamine-Cu(II) was synthesized easily using chemical attachment of the picolylaminecompound on FeO@SiO@GP, followed by treatment with copper salt in ethanol under reflux conditions. FeO@SiO@GP/Picolylamine-Cu(II) was affirmed by various analyses such as Fourier transform infrared, thermogravimetric analysis, X-ray diffraction, vibrating-sample magnetometry, field-emission scanning electron microscopy, transmission electron microscopy, DLS, inductively coupled plasma, energy-dispersive X-ray spectrometry, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller.

View Article and Find Full Text PDF

An ecofriendly inorganic-organic hybrid and novel Schiff base complex of copper coated on epoxy-modified FeO@SiO MNPs was successfully designed and prepared from readily available chemicals. In this method, a Schiff base complex as a linker is utilized to protect copper nanoparticles to the core-shell FeO exterior without agglomeration. The resulted Schiff base complex of copper coated on epoxy-modified FeO@SiO MNPs was characterized and confirmed via different analyses such as FT-IR, TGA, XRD, VSM, FE-SEM, TEM, ICP, EDX, and BET.

View Article and Find Full Text PDF

This research investigates antiviral potential of extracted honeybee products against COVID-19 main protease (Mpro) by computational methods. The crystal structure of COVID-19 Mpro was obtained from the protein data bank. Six synthetic drugs with antiviral properties were used as control samples in order to compare the results with those of natural ligands.

View Article and Find Full Text PDF

A pseudohomogeneous carrier as an emerging term refers to subnanometric carbon-based vehicle with a high ability to interact with genetic materials to form stable carboplex and successfully transfer them into the cell which will result in inhibiting or expressing of therapeutic genes. Chitosan is a non-toxic polyaminosaccharide used as a precursor in the presence of citric acid to produce carbon quantum dots (CQDs), which decorated with arginine as a surface passivation agent with high amine density in hydrothermal methodology. The Arginine-CQDs are comprehensively characterized by Fourier-transform infrared spectroscopy (FT-IR), Ultraviolet-visible spectroscopy (UV-vis), Atomic force microscopy (AFM), field emission scanning electron microscope (FE-SEM), Energy-dispersive X-ray (EDX) mapping, fluorescence, High-resolution transmission electron microscopy (HR-TEM), zeta potential and X-ray powder diffraction (XRD).

View Article and Find Full Text PDF

Herein, we present an interesting role of tungstate-decorated amphiphilic carbon quantum dots (A-CQDs/W) in the selective oxidative cleavage of alkenes to aldehydes. In this work, for the first time, we disclose an unprecedented tungstate-based oxidative system incorporating A-CQDs as a bridge to the homogeneous catalyst for selective and efficient cleavage of a wide substrate scope of alkenes into aldehydes. The A-CQDs/W were synthesized via a one-step hydrothermal synthesis approach using 1-aminopropyl-3-methyl-imidazolium chloride and stearic acid for the surface modification, following by anion-exchange to immobilize WO to A-CQDs.

View Article and Find Full Text PDF

The oxidative cleavage of alkenes to the corresponding aldehydes using new amphiphilic carbon quantum dots (A-CQDs) as a pseudohomogeneous carbocatalyst is achieved for the first time through green and sustainable chemical processes. In this work, we successfully design a recyclable pseudohomogeneous catalyst based on A-CQDs, which is decorated with 1-aminopropyl-3-methyl-imidazolium chloride and stearic acid. The functionalization is conducted to introduce a hydrophilic/hydrophobic functionality on the surface of the catalyst to achieve high catalyst availability in polar and nonpolar media with the green goal of eliminating organic (co)solvents and additives.

View Article and Find Full Text PDF

Peripheral nerve injury (PNI) is a devastating condition that may result in loss of sensory function, motor function, or both. In the present study, we construct an electrospun nerve guide conduit (NGC) based on polycaprolactone (PCL) and gelatin filled with citicoline bearing platelet-rich plasma (PRP) gel as a treatment for PNI. The NGCs fabricated from PCL/Gel polymeric blend using the electrospinning technique.

View Article and Find Full Text PDF

A novel electrically conductive nanofibrous scaffold based on polyaniline-co-(polydopamine-grafted-poly(d,l-lactide)) [PANI-co-(PDA-g-PLA)] was fabricated using electrospinning technique and its physicochemical as well as biological characteristics toward bone tissue engineering (TE) were investigated extensively. In detail, PANI-co-PDA was synthesized via a one-step chemical oxidization approach. Then, d,l-lactaide monomer was grafted onto PDA segment using a ring opening polymerization (ROP) to afford PANI-co-(PDA-g-PLA) terpolymer.

View Article and Find Full Text PDF

Achieving green and sustainable chemical processes by replacing organic solvents with water has always been one of the green chemistry goals and a challenging topic for chemists. However, the poor solubility of organic materials is a major limitation to achieving this goal, especially in alcohol oxidation. In this contribution, the development and design of amphiphilic catalysts via abundant, safe, cheaper, and more biocompatible sources have received notable attention.

View Article and Find Full Text PDF

The immobilization of bioactive peptides as key molecules in numerous biological and physiological functions holds promise for designing advanced biomaterials. Graphene and its derivatives, having unique physicochemical properties, have brought considerable attention in the life sciences. In this regard, the chemical manipulation of the graphene surface with bioactive peptides opens a new horizon to design bioactive materials for a variety of future nanobiotechnologies.

View Article and Find Full Text PDF

The graphene-based materials with unique, versatile, and tunable properties have brought new opportunities for the leading edge of advanced nanobiotechnology. In this regard, the use of graphene in gene delivery applications is still at early stages. In this study, we successfully designed a new complex of carboxylated-graphene (G-COOH) with ethidium bromide (EtBr) and used it as a nanovector for efficient gene delivery into the AGS cells.

View Article and Find Full Text PDF

A novel and efficient method has been developed for the synthesis of 2,5-disubstituted 1,3,4-oxadiazole derivatives using (N-isocyanimino)triphenylphosphorane, a secondary amine, a carboxylic acid, and an aromatic aldehyde in CH(2)Cl(2) at ambient temperature in high yields without using any catalyst or activation. The procedure provides an alternative method to the synthesis of fully substituted 1,3,4-oxadiazole derivatives.

View Article and Find Full Text PDF