Developing electrode-driven biocatalytic systems utilizing the P450 cytochromes for selective oxidations depends not only on achieving electron transfer (ET) but also doing so at rates that favor native-like turnover. Herein we report studies that correlate rates of heme reduction with ET pathways and resulting product distributions. We utilized single-surface cysteine mutants of the heme domain of P450 from Bacillus megaterium and modified the thiols with N-(1-pyrene)-iodoacetamide, affording proteins that could bond to basal-plane graphite.
View Article and Find Full Text PDFThe structure and unfolding of metal-free (apo) human wild-type SOD1 and three pathogenic variants of SOD1 (A4V, G93R, and H48Q) that cause familial amyotrophic lateral sclerosis have been studied with amide hydrogen/deuterium exchange and mass spectrometry. The results indicate that a significant proportion of each of these proteins exists in solution in a conformation in which some strands of the beta-barrel (i.e.
View Article and Find Full Text PDFDetermining the composition of aggregated superoxide dismutase 1 (SOD1) species associated with amyotrophic lateral sclerosis (ALS), especially with respect to co-aggregated proteins and post-translational modifications, could identify cellular or biochemical factors involved in the formation of these aggregates and explain their apparent neurotoxicity. The results of mass spectrometric and shotgun-proteomic analyses of SOD1-containing aggregates isolated from spinal cords of symptomatic transgenic ALS mice using two different isolation strategies are presented, including 1) resistance to detergent extraction and 2) size exclusion-coupled anti-SOD1 immunoaffinity chromatography. Forty-eight spinal cords from three different ALS-SOD1 mutant mice were analyzed, namely G93A, G37R, and the unnatural double mutant H46R/H48Q.
View Article and Find Full Text PDFJ Am Chem Soc
April 2007
The thermodynamics of zinc binding to metal-free (apo) human and bovine copper-zinc superoxide dismutases (SOD1) were measured using isothermal titration calorimetry. The apparent thermodynamics of zinc binding to the apoproteins were favorable (Ka > 108 M-1), with an observed stoichiometry of one zinc per homodimer. The change in heat capacity for the one-zinc binding event was large and negative (approximately -650 cal mol-1 K-1), suggestive of significant structural changes to the protein upon zinc binding.
View Article and Find Full Text PDFHydrogen exchange monitored by mass spectrometry has been used to study the structural behavior of the pathogenic A4V variant of superoxide dismutase 1 (SOD1) in the metal-free (apo) form. Mass spectrometric data revealed that in the disulfide-intact (S-S) form, the A4V variant is destabilized at residues 50-53, in the disulfide subloop of the dimer interface, but many other regions of the A4V protein exhibited hydrogen exchange properties identical to that of the wild type protein. Additionally, mass spectrometry revealed that A4V apoSOD1(S-S) undergoes slow localized unfolding in a large segment of the beta-barrel that included beta3, beta4, and loops II and III.
View Article and Find Full Text PDFDetailed electronic and geometric structural descriptions of the blue copper sites in wild-type (WT) stellacyanin and its Q99M and Q99L axial mutants have been obtained using a combination of XAS, resonance Raman, MCD, EPR, and DFT calculations. The results show that the origin of the short Cu-S(Cys) bond in blue copper proteins is the weakened axial interaction, which leads to a shorter (based on EXAFS results) and more covalent (based on S K-edge XAS) Cu-S bond. XAS pre-edge energies show that the effective nuclear charge on the copper increases going from O(Gln) to S(Met) to no axial (Leu) ligand, indicating that the weakened axial ligand is not fully compensated for by the increased donation from the thiolate.
View Article and Find Full Text PDFThe relative stabilities and structural properties of a representative set of 20 ALS-mutant Cu,Zn-superoxide dismutase apoproteins were examined by using differential scanning calorimetry and hydrogen-deuterium (H/D) exchange followed by MS. Contrary to recent reports from other laboratories, we found that ALS-mutant apoproteins are not universally destabilized by the disease-causing mutations. For example, several of the apoproteins with substitutions at or near the metal binding region (MBR) (MBR mutants) exhibited melting temperatures (Tm) in the range 51.
View Article and Find Full Text PDF