We demonstrate that single-walled carbon nanotube (SWCNT) membranes can be successfully utilized as nanometer-thick substrates for enhanced visualization and facilitated study of individual nanoparticles. As model objects, we transfer optically resonant 200 nm silicon nanoparticles onto pristine and ethanol-densified SWCNT membranes by the femtosecond laser printing method. We image nanoparticles by scanning electron and bright-field optical microscopy, and characterize by linear and Raman scattering spectroscopy.
View Article and Find Full Text PDFMaterials with electrically tunable optical properties offer a wide range of opportunities for photonic applications. The optical properties of the single-walled carbon nanotubes (SWCNTs) can be significantly altered in the near-infrared region by means of electrochemical doping. The states' filling, which is responsible for the optical absorption suppression under doping, also alters the nonlinear optical response of the material.
View Article and Find Full Text PDF