Publications by authors named "Araki W"

Background: Interventions to prevent or attenuate cognitive decline and dementia in older adults are becoming increasingly important. Recently, cognitive training exercise can be via computer or mobile technology for independent or home use. Recent meta-analysis has reported that Computerized Cognitive Training (CCT) is effective at enhancing cognitive function in healthy older and Alzheimer's disease adults, although little is known about individual characteristics of each computerized program.

View Article and Find Full Text PDF

Burning mouth syndrome (BMS) is characterized by persistent oral burning sensations without corresponding organic findings. Dementia with Lewy bodies (DLB) is a common type of dementia and generally presents visual hallucination and parkinsonism as motor dysfunction besides cognitive decline. In this case report, we present a case in which DLB emerged during the treatment for BMS, with a relatively positive outcome for BMS.

View Article and Find Full Text PDF

Recent studies have revealed that soluble amyloid-β oligomers (AβOs) play a pathogenetic role in Alzheimer's disease (AD). Indeed, AβOs induce neurotoxic and synaptotoxic effects and are also critically involved in neuroinflammation. Oxidative stress appears to be a crucial event underlying these pathological effects of AβOs.

View Article and Find Full Text PDF

Background: Although a large amount of evidence has revealed that amyloid β (Aβ), especially Aβ oligomers, protofibrils, and pyroglutamated Aβs, participate primarily in the pathophysiological processes of Alzheimer's disease, most clinical trials of anti-Aβ antibody therapy have never acquired successful efficacy in human clinical trials, partly because peripheral administration of antibody medications was unable to deliver sufficient amounts of the molecules to the brain. Recently, we developed polymeric nanomicelles capable of passing through the blood-brain barrier that function as chaperones to deliver larger amounts of heavy molecules to the brain. Herein, we aimed to evaluate the efficacy of newly developed antibody 6H4 fragments specific to Aβ oligomers encapsulated in polymeric nanomicelles on the development of Alzheimer's disease pathology in Alzheimer's disease model mice at the age of emergence of early Alzheimer's disease pathology.

View Article and Find Full Text PDF

Pancreatic cancer has a low response rate to chemotherapy due to the low drug transferability caused by the low blood flow around the tumor. In the present study, focusing on nitric oxide (NO) for its vasodilatory and antitumor effects, a novel NO donor, a nitrated form of phenylbutyrate (NPB) was synthesized and the antitumor effect on human pancreatic cancer cells (AsPC1 and BxPC3) and xenografts was examined. Using Annexin V, NPB was confirmed to induce cell death against AsPC1 and BxPC3 in a time‑ and concentration‑dependent manner.

View Article and Find Full Text PDF

Recent evidence suggests that soluble amyloid-β oligomers (AβOs) act as a key factor in the pathogenetic mechanism of Alzheimer's disease (AD). AβOs induce neurotoxic and synaptotoxic effects probably through binding to certain receptors, however it remains unclarified which receptors are most critically involved. In addition, dysregulation in glutamatergic signaling is implicated in AD.

View Article and Find Full Text PDF

Soluble oligomeric assemblies of amyloid β-protein (Aβ), called Aβ oligomers (AβOs), have been recognized as primary pathogenetic factors in the molecular pathology of Alzheimer's disease (AD). AβOs exert neurotoxicity and synaptotoxicity and play a critical role in the pathological progression of AD by aggravating oxidative and synaptic disturbances and tau abnormalities. As such, they are important therapeutic targets.

View Article and Find Full Text PDF

Lemur tail kinase 1 (LMTK1), previously called apoptosis-associated tyrosine kinase (AATYK), is an endosomal Ser/Thr kinase. We recently reported that LMTK1 regulates axon outgrowth, dendrite arborization and spine formation via Rab11-mediated vesicle transport. Rab11, a small GTPase regulating recycling endosome trafficking, is shown to be associated with late-onset Alzheimer's disease (LOAD).

View Article and Find Full Text PDF

Objectives: Concentrations of soluble amyloid precursor proteins-α (sAPPα) and -β (sAPPβ) in cerebrospinal fluid (CSF) may reflect the neuropathology of Alzheimer's disease (AD). We previously reported that the concentrations of both sAPPα and sAPPβ were significantly higher in patients with mild cognitive impairment (MCI) due to AD (MCI-AD) than in control subjects without cognitive impairment. The present study analyzed whether these sAPPs are useful in the differential diagnosis of MCI.

View Article and Find Full Text PDF

We report a case of a dialysis patient with severe aortic stenosis(AS) along with bilateral pheochromocytomas. A 52-year-old man presented with syncope and was diagnosed with severe AS. Although aortic valve replacement(AVR) was scheduled, bilateral pheochromocytomas were found during preoperative examination.

View Article and Find Full Text PDF

A 65-year-old woman with type Ⅱ diabetes and unstable angina presented with chest pain due to in-stent restenosis. Her regular medication comprised an sodium-glucose co-transporter( SGLT) 2 inhibitor. Because of unstable hemodynamic status, semi-emergency coronary artery bypass grafting (CABG) was performed.

View Article and Find Full Text PDF

Soluble amyloid-β (Aβ) oligomers (AβOs), which elicit neurotoxicity and synaptotoxicity, are thought to play an initiating role in the pathology of Alzheimer's disease (AD). Since AβOs are a key therapeutic target, we attempted to identify natural agents that reduce AβO neurotoxicity. Using an assay system in which primary cultured neurons are treated with AβOs, we found that Rhodiola rosea extracts and one of its main constituents, tyrosol, significantly inhibited AβO-induced caspase-3 activation.

View Article and Find Full Text PDF

Abnormalities of the autophagy-lysosomal pathway (ALP) have been implicated in the pathology of Alzheimer's disease (AD). Activation of TFEB (transcription factor EB), a master regulator of the ALP, leads to ALP facilitation. The present study sought to clarify whether TFEB-mediated ALP facilitation influences the process of amyloid β-protein (Aβ) generation in neurons.

View Article and Find Full Text PDF

Background: Because soluble (or secreted) amyloid precursor protein-β (sAPPβ) and -α (sAPPα) possibly reflect pathological features of Alzheimer's disease (AD), they are potential biomarker candidates for dementia disorders, including AD and mild cognitive impairment (MCI) due to AD (MCI-AD). However, controversial results have been reported regarding their alterations in the cerebrospinal fluid (CSF) of AD and MCI-AD patients. In this study, we re-assessed the utility of sAPPα and sAPPβ in CSF as diagnostic biomarkers of dementia disorders.

View Article and Find Full Text PDF

Mitochondrial dysfunction is implicated in the pathological mechanism of Alzheimer's disease (AD). Amyloid β-protein (Aβ), which plays a central role in AD pathogenesis, is reported to accumulate within mitochondria. However, a question remains as to whether Aβ is generated locally from amyloid precursor protein (APP) within mitochondria.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of extracellular amyloid β-protein (Aβ) and intracellular hyperphosphorylated tau proteins. Recent evidence suggests that soluble Aβ oligomers elicit neurotoxicity and synaptotoxicity, including tau abnormalities, and play an initiating role in the development of AD pathology. In this study, we focused on the unclarified issue of whether the neurotoxicity of Aβ oligomers is a reversible process.

View Article and Find Full Text PDF

β-Secretase, widely known as β-site APP cleaving enzyme 1 (BACE1), is a membrane-associated protease that cleaves amyloid precursor protein (APP) to generate amyloid β-protein (Aβ). As this cleavage is a pathologically relevant event in Alzheimer's disease, BACE1 is considered a viable therapeutic target. BACE1 can be regulated at the transcriptional, post-transcriptional, translational, and post-translational levels.

View Article and Find Full Text PDF

Background: β-Site amyloid precursor protein cleaving enzyme 1 (BACE1) is a membrane-bound aspartyl protease that initiates amyloid β-protein (Aβ) generation. Aberrant elevation of BACE1 levels in brains of Alzheimer's disease (AD) patients may involve Aβ. In the present study, we used a neuron culture model system to investigate the effects of Aβ on BACE1 expression as well as the underlying mechanisms.

View Article and Find Full Text PDF

The β-secretase called BACE1 is a membrane-associated protease that initiates the generation of amyloid β-protein (Aβ), a key event in Alzheimer's disease (AD). However, the mechanism of intraneuronal regulation of BACE1 is poorly understood. Here, we present evidence that low-density lipoprotein receptor-related protein 1 (LRP1), a multi-functional receptor, has a previously unrecognized function to regulate BACE1 in neurons.

View Article and Find Full Text PDF

Cerebral accumulation of amyloid β-protein (Aβ) is thought to play a key role in the molecular pathology of Alzheimer's disease (AD). Three secretases (β-, γ-, and α-secretase) are proteases that control the production of Aβ from amyloid precursor protein. Increasing evidence suggests that cholesterol-rich membrane microdomains termed 'lipid rafts' are involved in the biogenesis and accumulation of Aβ as well as Aβ-mediated neurotoxicity.

View Article and Find Full Text PDF

The present study proposes the use of ultrasonic back-reflected waves for evaluating low cycle fatigue crack growth from persistent slip bands (PSBs) of stainless steel under block loading. Fatigue under high-low block loading changes the back-reflected intensity of the ultrasonic wave that emanates from the surface. Measuring the change in ultrasonic intensity can predict the start of crack growth with reasonable accuracy.

View Article and Find Full Text PDF

TAR DNA-binding protein (TDP-43) is a major component of most ubiquitin-positive neuronal and glial inclusions of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). A number of missense mutations in the TARDBP gene have been identified in patients with familial and sporadic ALS, as well as familial FTLD with ALS. In the diseased states, TDP-43 proteins exhibit characteristic alterations, including truncation, abnormal phosphorylation, and altered subcellular distribution.

View Article and Find Full Text PDF

Amyloid beta (Aβ) peptide, the main component of senile plaques in patients with Alzheimer's disease (AD), is derived from proteolytic cleavage of amyloid precursor protein (APP) by β- and γ-secretases. Alpha-cleavage of APP by α-secretase has a potential to preclude the generation of Aβ because it occurs within the Aβ domain. We previously reported that a metalloendopeptidase, nardilysin (N-arginine dibasic convertase; NRDc) enhances α-cleavage of APP, which results in the decreased generation of Aβ in vitro.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of neurodegenerative dementia, affecting about 30 million people worldwide. Despite recent advances in understanding its molecular pathology, no mechanism-based drugs are currently available that can halt the progression of AD. Because amyloid-β-peptide (Aβ), a primary component of senile plaques, is thought to be a central pathogenic culprit, several disease-modifying therapies are being developed, including inhibitors of Aβ-producing proteases and immunotherapies with anti-Aβ antibodies.

View Article and Find Full Text PDF