Arbuscular mycorrhizal (AM) fungi improve plant growth, nutrition, fitness and stress tolerance while AM fungi obtain carbohydrates and lipids from the host. This whole process of mutual benefit requires substantial alterations in the structural and functional aspects of the host root cells. These modifications ultimately culminate in the formation of arbuscules, which are specialized intraradical and highly branched fungal structures.
View Article and Find Full Text PDFPlant defence peptides are paramount endogenous danger signals secreted after a challenge, intensifying the plant immune response. The peptidic hormone Systemin (Sys) was shown to participate in resistance in several plant pathosystems, although the mechanisms behind Sys-induced resistance when exogenously applied remain elusive. We performed proteomic, metabolomic, and enzymatic studies to decipher the Sys-induced changes in tomato plants in either the absence or the presence of Botrytis cinerea infection.
View Article and Find Full Text PDFBackground: Geminiviruses are DNA plant viruses that cause highly damaging diseases affecting crops worldwide. During the infection, geminiviruses hijack cellular processes, suppress plant defenses, and cause a massive reprogramming of the infected cells leading to major changes in the whole plant homeostasis. The advances in sequencing technologies allow the simultaneous analysis of multiple aspects of viral infection at a large scale, generating new insights into the molecular mechanisms underlying plant-virus interactions.
View Article and Find Full Text PDFJasmonates (JAs) are phytohormones that finely regulate critical biological processes, including plant development and defense. JASMONATE ZIM-DOMAIN (JAZ) proteins are crucial transcriptional regulators that keep JA-responsive genes in a repressed state. In the presence of JA-Ile, JAZ repressors are ubiquitinated and targeted for degradation by the ubiquitin/proteasome system, allowing the activation of downstream transcription factors and, consequently, the induction of JA-responsive genes.
View Article and Find Full Text PDFPlants (Basel)
February 2023
Huanglongbing (HLB) is one of the most destructive diseases threatening citriculture worldwide. This disease has been associated with α-proteobacteria species, namely Liberibacter. Due to the unculturable nature of the causal agent, it has been difficult to mitigate the disease, and nowadays a cure is not available.
View Article and Find Full Text PDFGeminivirus beet curly top Iran virus (BCTIV) is one of the main causal agents of the beet curly top disease in Iran and the newly established genus type species. Although the biological features of known becurtoviruses are similar to those of curtoviruses, they only share a limited sequence identity, and no information is available on the function of their viral genes. In this work, we demonstrate that BCTIV V2, as the curtoviral V2, is also a local silencing suppressor in and can delay the systemic silencing spreading, although it cannot block the cell-to-cell movement of the silencing signal to adjacent cells.
View Article and Find Full Text PDFControlled primary cell wall remodeling allows plant growth under stressful conditions, but how these changes are conveyed to adjust cellulose synthesis is not understood. Here, we identify the TETRATRICOPEPTIDE THIOREDOXIN-LIKE (TTL) proteins as new members of the cellulose synthase complex (CSC) and describe their unique and hitherto unknown dynamic association with the CSC under cellulose-deficient conditions. We find that TTLs are essential for maintaining cellulose synthesis under high-salinity conditions, establishing a stress-resilient cortical microtubule array, and stabilizing CSCs at the plasma membrane.
View Article and Find Full Text PDFSeed transmission can be of considerable relevance to the dissemination of plant viruses in nature and for their prevalence and perpetuation. Long-distance spread of isolates of the begomovirus species (genus , family ) has recently occurred from Asia to the Middle East and the Mediterranean Basin. Here, we investigated the possible transmission by melon ( L.
View Article and Find Full Text PDFThe enzymes involved in l-ascorbate biosynthesis in photosynthetic organisms (the Smirnoff-Wheeler [SW] pathway) are well established. Here, we analyzed their subcellular localizations and potential physical interactions and assessed their role in the control of ascorbate synthesis. Transient expression of C terminal-tagged fusions of SW genes in Nicotiana benthamiana and Arabidopsis thaliana mutants complemented with genomic constructs showed that while GDP-d-mannose epimerase is cytosolic, all the enzymes from GDP-d-mannose pyrophosphorylase (GMP) to l-galactose dehydrogenase (l-GalDH) show a dual cytosolic/nuclear localization.
View Article and Find Full Text PDFGeminiviruses (viruses with circular, single-stranded DNA genomes) are one of the major groups of plant viruses causing severe economic problems for agriculture worldwide. The control of these pathogens has become a priority to maintain the production of important crops, including cotton, maize, cassava, and other vegetables. Obtaining resistant plants is the most powerful strategy and a key factor to stablish an effective integrated pest management for a robust control.
View Article and Find Full Text PDFGeminiviruses are single-stranded DNA plant viruses with circular genomes packaged within geminate particles. Among the family, and comprise the two best characterized genera. Curtovirus and Old World begomovirus possess similar genome structures with six to seven open-reading frames (ORF).
View Article and Find Full Text PDFNowadays, Huanglongbing (HLB) disease, associated with Liberibacter asiaticus (CLas), seriously affects citriculture worldwide, and no cure is currently available. Transcriptomic analysis of host-pathogen interaction is the first step to understand the molecular landscape of a disease. Previous works have reported the transcriptome profiling in response to HLB in different susceptible citrus species; however, similar studies in tolerant citrus species, including Mexican lime, are limited.
View Article and Find Full Text PDFMexican lime () belongs to the Rutaceae family and nowadays is one of the major commercial citrus crops in different countries. In Mexico, Mexican lime production is impaired by Huanglongbing (HLB) disease associated to Liberibacter asiaticus (CLas) bacteria. To date, transcriptomic studies of CLas-Citrus interaction, have been performed mainly in sweet citrus models at symptomatic (early) stage where pleiotropic responses could mask important, pathogen-driven host modulation as well as, host antibacterial responses.
View Article and Find Full Text PDFIsolates of the (TYLCV) species (genus , family ) infect tomato crops worldwide, causing severe economic damage. Members of the whitefly sibling species group are the vector of begomoviruses, including TYLCV. However, transmission of isolates of the type strain (Israel [IL]) of TYLCV (TYLCV-IL) by tomato seed has recently been reported based on infections occurring in Korea.
View Article and Find Full Text PDFBrassinosteroids (BRs) form a group of steroidal hormones essential for plant growth, development, and stress responses. BRs are perceived extracellularly by plasma membrane receptor-like kinases that activate an interconnected signal transduction cascade, leading to the transcriptional regulation of BR-responsive genes. () genes are specific for land plants, and their encoded proteins are defined by the presence of protein-protein interaction motives, that is, an intrinsic disordered region at the N terminus, six tetratricopeptide repeat domains, and a C terminus with homology to thioredoxins.
View Article and Find Full Text PDFGeminiviruses are plant ssDNA viruses that replicate through dsDNA intermediates and form minichromosomes which carry the same epigenetic marks as the host chromatin. During the infection, geminiviruses are targets of the post-transcriptional and transcriptional gene silencing machinery. To obtain insights into the connection between virus-derived small RNAs (vsRNAs), viral genome methylation and gene expression, we obtained the transcriptome, sRNAome and methylome from the geminivirus Tomato yellow leaf curl virus-infected tomato plants.
View Article and Find Full Text PDFPost-translational modifiers such as the small ubiquitin-like modifier (SUMO) peptide act as fast and reversible protein regulators. Functional characterization of the sumoylation machinery has determined the key regulatory role that SUMO plays in plant development. Unlike components of the SUMO conjugation pathway, SUMO proteases (ULPs) are encoded by a relatively large gene family and are potential sources of specificity within the pathway.
View Article and Find Full Text PDFThe suppression of gene silencing is a key mechanism for the success of viral infection in plants. DNA viruses from the Geminiviridae family encode several proteins that suppress transcriptional and post-transcriptional gene silencing (TGS/PTGS). In Begomovirus, the most abundant genus of this family, three out of six genome-encoded proteins, namely C2, C4 and V2, have been shown to suppress PTGS, with V2 being the strongest PTGS suppressor in transient assays.
View Article and Find Full Text PDFHeterochromatin underpins gene repression, genome integrity, and chromosome segregation. In the fission yeast Schizosaccharomyces pombe, conserved protein complexes effect heterochromatin formation via RNA interference-mediated recruitment of a histone H3 lysine 9 methyltransferase to cognate chromatin regions. To identify small molecules that inhibit heterochromatin formation, we performed an in vivo screen for loss of silencing of a dominant selectable kanMX reporter gene embedded within fission yeast centromeric heterochromatin.
View Article and Find Full Text PDFThe yeast two-hybrid system is currently one of the most standardized protein interaction mapping techniques. The rationale of the yeast two-hybrid system relies on the physical separation of the DNA-binding domain from the transcriptional activation domain of several transcription factors. The protein of interest (bait) is fused to a DNA-binding domain, and complementary DNA (cDNA) library-encoded proteins are fused to a transcriptional activation domain.
View Article and Find Full Text PDFThe histone H3 variant, CENP-A, is normally assembled upon canonical centromeric sequences, but there is no apparent obligate coupling of sequence and assembly, suggesting that centromere location can be epigenetically determined. To explore the tolerances and constraints on CENP-A deposition we investigated whether certain locations are favoured when additional CENP-A(Cnp1) is present in fission yeast cells. Our analyses show that additional CENP-A(Cnp1) accumulates within and close to heterochromatic centromeric outer repeats, and over regions adjacent to rDNA and telomeres.
View Article and Find Full Text PDFCytosine methylation is an epigenetic mark that promotes gene silencing and plays an important role in genome defence against transposons and invading DNA viruses. Previous data showed that the largest family of single-stranded DNA viruses, Geminiviridae, prevents methylation-mediated transcriptional gene silencing (TGS) by interfering with the proper functioning of the plant methylation cycle. Here, we describe a novel counter-defence strategy used by geminiviruses, which reduces the expression of the plant maintenance DNA methyltransferases, METHYLTRANSFERASE 1 (MET1) and CHROMOMETHYLASE 3 (CMT3), in both locally and systemically infected tissues.
View Article and Find Full Text PDFSpecialized chromatin containing CENP-A nucleosomes instead of H3 nucleosomes is found at all centromeres. However, the mechanisms that specify the locations at which CENP-A chromatin is assembled remain elusive in organisms with regional, epigenetically regulated centromeres. It is known that normal centromeric DNA is transcribed in several systems including the fission yeast, Schizosaccharomyces pombe.
View Article and Find Full Text PDF