The deformation mechanism in amorphous solids subjected to external shear remains poorly understood because of the absence of well-defined topological defects mediating the plastic deformation. The notion of soft spots has emerged as a useful tool to characterize the onset of irreversible rearrangements and plastic flow, but these entities are not clearly defined in terms of geometry and topology. In this study, we unveil the phenomenology of recently discovered, precisely defined topological defects governing the microscopic mechanical and yielding behavior of a model 3D glass under shear deformation.
View Article and Find Full Text PDFFrom studies molecular dynamics simulations, we report results on structure and dynamics in mixtures of active colloids and passive polymers that are confined inside a spherical container with a repulsive boundary. All interactions in the fully passive limit are chosen in such a way that in equilibrium coexistence between colloid-rich and polymer-rich phases occurs. For most part of the studies the chosen compositions give rise to Janus-like structure: nearly one side of the sphere is occupied by the colloids and the rest by the polymers.
View Article and Find Full Text PDFWe study the dynamics of clustering in systems containing active particles that are immersed in an explicit solvent. For this, we have adopted a hybrid simulation method, consisting of molecular dynamics and multiparticle collision dynamics. In our model, the overlap-avoiding passive interaction of an active particle with another active particle or a solvent particle has been taken care of via variants of the Lennard-Jones potential.
View Article and Find Full Text PDFVia molecular dynamics simulations, we have studied the kinetics of vapor-"solid" phase transition in an active matter model in which self-propulsion is introduced via the well-known Vicsek rule. The overall density of the particles is chosen in such a way that the evolution morphology consists of disconnected clusters that are defined as regions of high density of particles. Our focus has been on understanding the influence of the above-mentioned self-propulsion on structure and growth of these clusters by comparing the results with those for the passive limit of the model that also exhibits vapor-"solid" transition.
View Article and Find Full Text PDFWe performed molecular dynamics simulations to study relaxation phenomena during vapor-liquid transitions in a single component Lennard-Jones system. Results from two different overall densities are presented: one in the neighborhood of the vapor branch of the coexistence curve and the other being close to the critical density. The nonequilibrium morphologies, growth mechanisms and growth laws in the two cases are vastly different.
View Article and Find Full Text PDF