Objective: Many patients with melanoma treated with immune checkpoint inhibitors (ICIs) do not derive response. Preclinical and retrospective studies identified that inhibition of the cyclooxygenase (COX) pathway may improve response to ICI treatment.
Methods: This prospective single site phase II trial accrued patients with advanced/metastatic melanoma.
This year at , we are highlighting women in science by sharing their stories and amplifying their voices. In this Viewpoint, we hear from a cross section of women, across multiple research fields, discussing their science and the process of setting up a lab as an independent researcher.
View Article and Find Full Text PDFPurpose: Immune checkpoint inhibitors (ICIs) have significantly improved the survival of patients with cancer and provided long-term durable benefit. However, ICI-treated patients develop a range of toxicities known as immune-related adverse events (irAEs), which could compromise clinical benefits from these treatments. As the incidence and spectrum of irAEs differs across cancer types and ICI agents, it is imperative to characterize the incidence and spectrum of irAEs in a pan-cancer cohort to aid clinical management.
View Article and Find Full Text PDFCancer patients treated with immune checkpoint inhibitors (ICIs) are susceptible to a broad and variable array of immune-related adverse events (irAEs). With increasing clinical use of ICIs, defining the mechanism for irAE development is more critical than ever. However, it currently remains challenging to predict when these irAEs occur and which organ may be affected, and for many of the more severe irAEs, inaccessibility to the tissue site hampers mechanistic insight.
View Article and Find Full Text PDFGenetic variants associated with human autoimmune diseases commonly map to non-coding control regions, particularly enhancers that function selectively in immune cells and fine-tune gene expression within a relatively narrow range of values. How such modest, cell-type-selective changes can meaningfully shape organismal disease risk remains unclear. To explore this issue, we experimentally manipulated species-conserved enhancers within the disease-associated locus and studied accompanying changes in the progression of autoimmunity.
View Article and Find Full Text PDFContext: Hypophysitis is a known immune-related adverse event (irAE) of immune checkpoint inhibitors (CPIs), commonly associated with CTLA-4 inhibitors and less often with PD-1/PD-L1 inhibitors.
Objective: We aimed to determine clinical, imaging, and HLA characteristics of CPI-induced hypophysitis (CPI-hypophysitis).
Methods: We examined the clinical and biochemical characteristics, magnetic resonance imaging (MRI) of the pituitary, and association with HLA type in patients with CPI-hypophysitis.
Low-dose human interleukin-2 (hIL-2) treatment is used clinically to treat autoimmune disorders due to the cytokine's preferential expansion of immunosuppressive regulatory T cells (Tregs). However, off-target immune cell activation and short serum half-life limit the clinical potential of IL-2 treatment. Recent work showed that complexes comprising hIL-2 and the anti-hIL-2 antibody F5111 overcome these limitations by preferentially stimulating Tregs over immune effector cells.
View Article and Find Full Text PDFCheckpoint inhibitors (CPIs) targeting programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) have revolutionized cancer treatment but can trigger autoimmune complications, including CPI-induced diabetes mellitus (CPI-DM), which occurs preferentially with PD-1 blockade. We found evidence of pancreatic inflammation in patients with CPI-DM with shrinkage of pancreases, increased pancreatic enzymes, and in a case from a patient who died with CPI-DM, peri-islet lymphocytic infiltration. In the NOD mouse model, anti-PD-L1 but not anti-CTLA-4 induced diabetes rapidly.
View Article and Find Full Text PDFCancer immunotherapies can successfully activate immune responses towards certain tumors. However, this can also result in the development of treatment-induced immune-related adverse events (irAEs) in multiple tissues. Growing evidence suggests that cytokine production in response to these therapeutics potentiates the development of irAEs and may have predictive value as biomarkers for irAE occurrence.
View Article and Find Full Text PDFPatients with cancer with liver metastasis demonstrate significantly worse outcomes than those without liver metastasis when treated with anti-PD-1 immunotherapy. The mechanism of liver metastases-induced reduction in systemic antitumor immunity is unclear. Using a dual-tumor immunocompetent mouse model, we found that the immune response to tumor antigen presence within the liver led to the systemic suppression of antitumor immunity.
View Article and Find Full Text PDFCancer immunotherapies are changing the landscape of cancer care. Intratumoral talimogene iaherparepvec (T-VEC), an oncolytic viral vaccine, has been approved for treatment of unresectable melanoma with minimal toxicity. We describe the first case of a centenarian who developed autoimmune diabetes while on T-VEC immunotherapy.
View Article and Find Full Text PDFImmune checkpoint inhibitors (CPIs) reverse immune suppression that is thought to allow malignant growth. Despite remarkable efficacy in a subset of cancers, their use is accompanied by immune-related adverse events, including endocrinopathies such as hypophysitis, thyroid dysfunction, diabetes, and adrenalitis. These conditions are heterogenous, with differing incidence across CPI types, but are unified by the acuity and extremity of tissue-specific organ failure.
View Article and Find Full Text PDFThe clinical success of cancer immunotherapies targeting PD-1 and CTLA-4 has ignited a substantial research effort to improve our understanding of tumor immunity. Recent studies have revealed that the immune contexture of a tumor influences therapeutic response and survival benefit for cancer patients. Identifying treatment modalities that limit immunosuppression, relieve T cell exhaustion, and potentiate effector functions in the tumor microenvironment (TME) is of much interest.
View Article and Find Full Text PDFMany cancer therapies operate by inducing double-strand breaks (DSBs) in cancer cells, however treatment-resistant cells rapidly initiate mechanisms to repair damage enabling survival. While the DNA repair mechanisms responsible for cancer cell survival following DNA damaging treatments are becoming better understood, less is known about the role of the epigenome in this process. Using prostate cancer cell lines with differing sensitivities to radiation treatment, we analysed the DNA methylation profiles prior to and following a single dose of radiotherapy (RT) using the Illumina Infinium HumanMethylation450 BeadChip platform.
View Article and Find Full Text PDFCancer Immunol Res
December 2018
The explosion in novel cancer immunotherapies has resulted in extraordinary clinical successes in the treatment of multiple cancers. Checkpoint inhibitors (CPIs) that target negative regulatory molecules have become standard of care. However, with the growing use of CPIs, alone or in combination with chemotherapy, targeted therapies, or other immune modulators, a significant increase in immune-related adverse events (irAEs) has emerged.
View Article and Find Full Text PDFInsulin-dependent diabetes may occur in patients with cancers who are treated with checkpoint inhibitors (CPIs). We reviewed cases occurring over a 6-year period at two academic institutions and identified 27 patients in whom this developed, or an incidence of 0.9%.
View Article and Find Full Text PDFRegulatory T cells (Tregs) are critical for maintaining immune homeostasis, but their presence in tumor tissues impairs anti-tumor immunity and portends poor prognoses in cancer patients. Here, we reveal a mechanism to selectively target and reprogram the function of tumor-infiltrating Tregs (TI-Tregs) by exploiting their dependency on the histone H3K27 methyltransferase enhancer of zeste homolog 2 (EZH2) in tumors. Disruption of EZH2 activity in Tregs, either pharmacologically or genetically, drove the acquisition of pro-inflammatory functions in TI-Tregs, remodeling the tumor microenvironment and enhancing the recruitment and function of CD8 and CD4 effector T cells that eliminate tumors.
View Article and Find Full Text PDFExtracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell-specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment.
View Article and Find Full Text PDFDespite the success of anti-programmed cell death protein 1 (PD1), anti-PD1 ligand 1 (PDL1) and anti-cytotoxic T lymphocyte antigen 4 (CTLA4) therapies in advanced cancer, a considerable proportion of patients remain unresponsive to these treatments (known as innate resistance). In addition, one-third of patients relapse after initial response (known as adaptive resistance), which suggests that multiple non-redundant immunosuppressive mechanisms coexist within the tumour microenvironment. A major immunosuppressive mechanism is the adenosinergic pathway, which now represents an attractive new therapeutic target for cancer therapy.
View Article and Find Full Text PDF