Mechanisms related to the induction of phlorotannin biosynthesis in marine brown algae remain poorly known. Several studies undertaken on fucoid species have shown that phlorotannins accumulate in the algae for several days or weeks after being exposed to grazing, and this is measured by direct quantification of soluble phenolic compounds. In order to investigate earlier inducible responses involved in phlorotannin metabolism, was studied between 6 and 72 h of grazing by the sea snail .
View Article and Find Full Text PDFA role as UV sunscreens has been suggested for phlorotannins, the phenolic compounds that accumulate in brown algae in response to a number of external stimuli and take part in cell wall structure. After exposure of the intertidal brown alga Fucus vesiculosus to artificial UV-B radiation, we examined its physiological responses by following the transcript level of the pksIII gene encoding a phloroglucinol synthase, likely to be involved in the first step of phlorotannins biosynthesis. We also monitored the expression of three targeted genes, encoding a heat shock protein (hsp70), which is involved in global stress responses, an aryl sulfotransferase (ast), which could be involved in the sulfation of phlorotannins, and a vanadium bromoperoxidase (vbpo), which can potentially participate in the scavenging of Reactive Oxygen Species (ROS) and in the cross-linking and condensation of phlorotannins.
View Article and Find Full Text PDF