Publications by authors named "Aqsa Tariq"

Article Synopsis
  • * In a case study, a pregnant patient faced discomfort due to a large fibroid, prompting a multidisciplinary team to manage her symptoms and ultimately deliver her baby via cesarean section at 35 weeks.
  • * After delivery, she underwent a successful surgery to remove the fibroid, which weighed 7 kg; a cesarean myomectomy wasn't performed during pregnancy due to the fibroid's risky location near major blood vessels.
View Article and Find Full Text PDF

Rhizosphere engineering approach is considered a quantum leap in plant sciences. The current study focused on investigating rhizobacterial efficiency to mobilize bioavailable phosphate from insoluble-phosphate source. Four efficient phosphate-solubilizing bacterial isolates, i.

View Article and Find Full Text PDF

The development of integrated analytical devices is crucial for advancing next-generation point-of-care platforms. Herein, we describe a facile synthesis of a strongly catalytic and durable Nitrogen-doped graphene oxide decorated platinum cobalt (NGO-PtCo) nanocomposite that is conjugated with target-specific DNA aptamer (i-e. MUC1) and grown on carbon fiber.

View Article and Find Full Text PDF

Salivary α-amylase (α-ALS) has drawn attention as a possible bioindicator for dental caries. Herein, combining the synergistic properties of multi-walled carbon nanotubes (MWCNTs), β-cyclodextrin (β-CD) and starch, an electrochemical sensor is constructed employing ferrocene (FCN) as an electrochemical indicator to oversee the progression of the enzymatic catalysis of α-ALS. The method involves a two-step chemical reaction sequence on a screen-printed carbon electrode (SPCE).

View Article and Find Full Text PDF

Nanozymes are cost-effective and robust but they lack specificity and selectivity, limiting their potential practical applications. Herein, molecularly imprinted polymers (MIPs) were grown in combination with multifunctional 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphyrin (THPP) oxidase-like nanozyme to engineer THPP@MIP interface with high affinities and differential selectivity for structurally related target analytes. THPP nanozyme displayed a high level of predefined binding affinity for etoposide (ETO), and served as a predesigned functional monomer to rationally tailor the selectivity of THPP@MIP surface in the presence of different guest molecules.

View Article and Find Full Text PDF

Current research into the role of engineered nanoparticles in drug delivery systems (DDSs) for medical purposes has developed numerous fascinating nanocarriers. This paper reviews the various conventionally used and current used carriage system to deliver drugs. Due to numerous drawbacks of conventional DDSs, nanocarriers have gained immense interest.

View Article and Find Full Text PDF