Background: The determination of HER2 expression status contributes significantly to HER2-targeted therapy in breast carcinoma. However, an economical, efficient, and non-invasive assessment of HER2 is lacking. We aimed to develop a clinicoradiomic nomogram based on radiomics scores extracted from multiparametric MRI (mpMRI, including ADC-map, T2W1, DCE-T1WI) and clinical risk factors to assess HER2 status.
View Article and Find Full Text PDFObjective: To investigate the feasibility of radiomics in predicting molecular subtype of breast invasive ductal carcinoma (IDC) based on dynamic contrast enhancement magnetic resonance imaging (DCE-MRI).
Methods: A total of 303 cases with pathologically confirmed IDC from January 2018 to March 2021 were enrolled in this study, including 223 cases from Fudan University Shanghai Cancer Center (training/test set) and 80 cases from Shaoxing Central Hospital (validation set). All the cases were classified as HR+/Luminal, HER2-enriched, and TNBC according to immunohistochemistry.
Purpose: To investigate the use of the combined model based on clinical and enhanced CT texture features for predicting the liver metastasis of high-risk gastrointestinal stromal tumors (GISTs).
Methods: This retrospective study was conducted including 204 patients with pathologically confirmed high-risk GISTs from the Zhejiang Cancer Hospital from January 2015 to June 2021, and 76 cases of them were diagnosed with simultaneous liver metastasis. We randomly divided the cohort into a training cohort (n = 142) and a validation cohort (n = 62) with a ratio of 7:3.
Zhejiang Da Xue Xue Bao Yi Xue Ban
April 2019
Objective: To evaluate the value of digital breast tomosynthesis (DBT) in diagnosis of dense breast lesions.
Methods: Clinical and pathological data of 163 patients (58 benign lesions, 122 malignant lesions, and 180 lesions in total) with breast lesions undergoing surgical treatment in Shaoxing Central Hospital from January 2017 to December 2018 were retrospectively analyzed. The lesions were classified into non-homogeneous dense gland type and extremely dense gland type according to BI-RADS creterion.