Publications by authors named "Apurva Pardeshi"

Multimodal cancer therapies are often required for progressive cancers due to the high persistence and mortality of the disease and the negative systemic side effects of traditional therapeutic methods. Thus, the development of less invasive modalities for recurring treatment cycles is of clinical significance. Herein, a light-activatable microparticle system was developed for localized, pulsatile delivery of anticancer drugs with simultaneous thermal ablation by applying controlled ON-OFF thermal cycles using near-infrared laser irradiation.

View Article and Find Full Text PDF

Decentralized manufacture of thermostable mRNA vaccines in a microneedle patch (MNP) format could enhance vaccine access in low-resource communities by eliminating the need for a cold chain and trained healthcare personnel. Here we describe an automated process for printing MNP Coronavirus Disease 2019 (COVID-19) mRNA vaccines in a standalone device. The vaccine ink is composed of lipid nanoparticles loaded with mRNA and a dissolvable polymer blend that was optimized for high bioactivity by screening formulations in vitro.

View Article and Find Full Text PDF

Cancer therapy research is of high interest because of the persistence and mortality of the disease and the side effects of traditional therapeutic methods, while often multimodal treatments are necessary based on the patient's needs. The development of less invasive modalities for recurring treatment cycles is thus of critical significance. Herein, a light-activatable microparticle system was developed for localized, pulsatile delivery of anticancer drugs with simultaneous thermal ablation, by applying controlled ON-OFF thermal cycles using near-infrared laser irradiation.

View Article and Find Full Text PDF

The ability of antibodies to distinctly identify the antigens is an important feature exploited by the scientific community for the treatment of various diseases. The therapeutic action of monoclonal antibodies (mAbs) is mediated along with the cells of the immune system, such as natural killer cells, T cells and macrophages. The two major mechanisms that govern the therapeutic efficacy of mAbs are the antibody dependent cell mediated cytotoxicity (ADCC) and the complement dependent cytotoxicity (CDC).

View Article and Find Full Text PDF

Combination of passive targeting with active targeting is a promising approach to improve the therapeutic efficacy of nanotherapy. However, most reported polymeric systems have sizes above 100 nm, which limits effective extravasation into tumors that are poorly vascularized and have dense stroma. This will, in turn, limit the overall effectiveness of the subsequent uptake by tumor cells active targeting.

View Article and Find Full Text PDF

The unique metabolic demand of cancer cells suggests a new therapeutic strategy targeting the metabolism in cancers. V9302 is a recently reported inhibitor of ASCT2 amino acid transporter which shows promising antitumor activity by blocking glutamine uptake. However, its poor solubility in aqueous solutions and tumor cells' compensatory metabolic shift to glucose metabolism may limit the antitumor efficacy of V9302.

View Article and Find Full Text PDF