The next generation of advanced materials is tending toward increasingly complex compositions. Synthesizing precise composition is time-consuming and becomes exponentially demanding with increasing compositional complexity. An experienced human operator does significantly better than a novice but still struggles to consistently achieve precision when synthesis parameters are coupled.
View Article and Find Full Text PDFBy circumventing the resolution limitations of optics, coherent diffractive imaging (CDI) and ptychography are making their way into scientific fields ranging from X-ray imaging to astronomy. Yet, the need for time consuming iterative phase recovery hampers real-time imaging. While supervised deep learning strategies have increased reconstruction speed, they sacrifice image quality.
View Article and Find Full Text PDFControlling the in-plane magnetocrystalline anisotropy and interfacial exchange coupling between ferromagnetic (FM) layers plays a key role in next-generation spintronic and magnetic memory devices. In this work, we explored the effect of tuning the magnetocrystalline anisotropy of LaSrCoO (LSCO) and LaSrMnO (LSMO) layers and the corresponding effect on interfacial exchange coupling by adjusting the thickness of the LSCO layer (). The epitaxial LSCO/LSMO bilayers were grown on (110)-oriented NdGaO (NGO) substrates with a fixed LSMO (top layer) thickness of 6 nm and LSCO (bottom layer) thicknesses varying from 1 to 10 nm.
View Article and Find Full Text PDFPaintings are complex objects containing many different chemical compounds that can react over time. The degradation of arsenic sulfide pigments causes optical changes in paintings. The main degradation product was thought to be white arsenolite (AsO), but previous research also showed the abundant presence of As(V) species.
View Article and Find Full Text PDFA better understanding of amorphous aluminum oxide's structure and electronic properties is obtained through combined experimental and computational approaches. Grazing incidence X-ray scattering measurements were carried out on aluminum oxide thin films grown using thermal atomic layer deposition. The corresponding pair distribution functions (PDFs) showed structures similar to previously reported PDFs of solid-state amorphous alumina and molten alumina.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Hafnia-based ferroelectric thin films are promising for semiconductor memory and neuromorphic computing applications. Amorphous, as-deposited, thin-film binary alloys of HfO and ZrO transform to the metastable, orthorhombic ferroelectric phase during post-deposition annealing and cooling. This transformation is generally thought to involve formation of a tetragonal precursor phase that distorts into the orthorhombic phase during cooling.
View Article and Find Full Text PDFAnnu Workshop Extrem Scale Exp Loop Comput
November 2022
Machine learning (ML) algorithms are showing a growing trend in helping the scientific communities across different disciplines and institutions to address large and diverse data problems. However, many available ML tools are programmatically demanding and computationally costly. The MLExchange project aims to build a collaborative platform equipped with enabling tools that allow scientists and facility users who do not have a profound ML background to use ML and computational resources in scientific discovery.
View Article and Find Full Text PDFOrbital anisotropy at interfaces in magnetic heterostructures has been key to pioneering spin-orbit-related phenomena. However, modulating the interface's electronic structure to make it abnormally asymmetric has been challenging because of lack of appropriate methods. Here, the authors report that low-energy proton irradiation achieves a strong level of inversion asymmetry and unusual strain at interfaces in [Co/Pd] superlattices through nondestructive, selective removal of oxygen from Co O /Pd superlattices during irradiation.
View Article and Find Full Text PDFWith the scaling of lateral dimensions in advanced transistors, an increased gate capacitance is desirable both to retain the control of the gate electrode over the channel and to reduce the operating voltage. This led to a fundamental change in the gate stack in 2008, the incorporation of high-dielectric-constant HfO (ref. ), which remains the material of choice to date.
View Article and Find Full Text PDFOn-chip dynamic strain engineering requires efficient micro-actuators that can generate large in-plane strains. Inorganic electrochemical actuators are unique in that they are driven by low voltages (≈1 V) and produce considerable strains (≈1%). However, actuation speed and efficiency are limited by mass transport of ions.
View Article and Find Full Text PDFIn situ characterization of electrochemical systems can provide deep insights into the structure of electrodes under applied potential. Grazing-incidence X-ray diffraction (GIXRD) is a particularly valuable tool owing to its ability to characterize the near-surface structure of electrodes through a layer of electrolyte, which is of paramount importance in surface-mediated processes such as catalysis and adsorption. Corrections for the refraction that occurs as an X-ray passes through an interface have been derived for a vacuum-material interface.
View Article and Find Full Text PDFThe data provided in this article is related to the research article entitled "Phase stabilization and oxidation of a continuous composition spread multi-principal element (AlFeNiTiVZr)Cr alloy" [1]. This data article describes the high-throughput synthesis and characterization processes of an (AlFeNiTiVZr)Cr alloy system. Continuous composition spread (CCS) thin-film libraries were synthesized by co-depositing an AlFeNiTiVZr metal alloy target and Cr target via magnetron sputtering.
View Article and Find Full Text PDFThe electrochemical CO reduction reaction (CORR) using Cu-based catalysts holds great potential for producing valuable multi-carbon products from renewable energy. However, the chemical and structural state of Cu catalyst surfaces during the CORR remains a matter of debate. Here, we show the structural evolution of the near-surface region of polycrystalline Cu electrodes under conditions through a combination of grazing incidence X-ray absorption spectroscopy (GIXAS) and X-ray diffraction (GIXRD).
View Article and Find Full Text PDFActive learning-the field of machine learning (ML) dedicated to optimal experiment design-has played a part in science as far back as the 18th century when Laplace used it to guide his discovery of celestial mechanics. In this work, we focus a closed-loop, active learning-driven autonomous system on another major challenge, the discovery of advanced materials against the exceedingly complex synthesis-processes-structure-property landscape. We demonstrate an autonomous materials discovery methodology for functional inorganic compounds which allow scientists to fail smarter, learn faster, and spend less resources in their studies, while simultaneously improving trust in scientific results and machine learning tools.
View Article and Find Full Text PDFThin-film continuous composition spreads of Fe-Co-O were fabricated by reactive cosputtering from elemental Fe and Co targets in reactive Ar/O atmosphere using deposition temperatures ranging from 300 to 700 °C. Fused silica and platinized Si/SiO strips were used as substrates. Ti and Ta were investigated as adhesion layer for Pt and the fabrication of the Fe-Co-O films.
View Article and Find Full Text PDFThin films of two types of high-entropy oxides (HEOs) have been deposited on 76.2 mm Si wafers using combinatorial sputter deposition. In one type of the oxides, (MgZnMnCoNi)O, all the metals have a stable divalent oxidation state and similar cationic radii.
View Article and Find Full Text PDFMaterial functionalities strongly depend on the stoichiometry, crystal structure, and homogeneity. Here we demonstrate an approach of amorphous nonstoichiometric inhomogeneous oxides to realize tunable ferromagnetism and electrical transport at room temperature. In order to verify the origin of the ferromagnetism, we employed a series of structural, chemical, and electronic state characterizations.
View Article and Find Full Text PDFThe LaSrCoO/LaSrMnO (LSCO/LSMO) bilayer system is an ideal perovskite oxide platform for investigating interface reconstruction and its effect on their magnetic properties. Previous studies have shown that LSCO can separate into magnetic sublayers, which possess distinct trends as the total LSCO thickness increases. In this study, we used polarized neutron reflectometry to quantify changes in the magnetic and chemical depth profiles, and it confirms the formation of ∼12 Å-thick interfacial LSCO and LSMO layers, characterized by a decreased nuclear scattering length density compared to the bulk of the layers.
View Article and Find Full Text PDFCombinatorial synthesis and high-throughput characterization of a Ni-Ti-Co thin film materials library are reported for exploration of reversible martensitic transformation. The library was prepared by magnetron co-sputtering, annealed in vacuum at 500 °C without atmospheric exposure, and evaluated for shape memory behavior as an indicator of transformation. Composition, structure, and transformation behavior of the 177 pads in the library were characterized using high-throughput wavelength dispersive spectroscopy (WDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and four-point probe temperature-dependent resistance (()) measurements.
View Article and Find Full Text PDFThin-film material libraries in the ternary and quaternary metal oxide systems Fe-V-O, Cu-V-O, and Cu-Fe-V-O were synthesized using combinatorial reactive co-sputtering with subsequent annealing in air. Their compositional, structural, and functional properties were assessed using high-throughput characterization methods. Prior to the investigation of the quaternary system Cu-Fe-V-O, the compositions (FeV)O and (CuV)O with promising photoactivity were identified from their ternary subsystems Fe-V-O and Cu-V-O, respectively.
View Article and Find Full Text PDFOn the basis of a set of machine learning predictions of glass formation in the Ni-Ti-Al system, we have undertaken a high-throughput experimental study of that system. We utilized rapid synthesis followed by high-throughput structural and electrochemical characterization. Using this dual-modality approach, we are able to better classify the amorphous portion of the library, which we found to be the portion with a full width at half maximum (fwhm) of >0.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFUltrathin ferroelectric materials could potentially enable low-power perovskite ferroelectric tetragonality logic and nonvolatile memories. As ferroelectric materials are made thinner, however, the ferroelectricity is usually suppressed. Size effects in ferroelectrics have been thoroughly investigated in perovskite oxides-the archetypal ferroelectric system.
View Article and Find Full Text PDF