Background: Familial Mediterranean fever (FMF), caused by mutations in the pyrin-encoding MEFV gene, is characterized by uncontrolled caspase-1 activation and IL-1β secretion. A similar mechanism drives inflammation in cryopyrin-associated periodic fever syndrome (CAPS) caused by mutations in NLRP3. CAPS and FMF, however, result in largely different clinical manifestations, pointing to additional, autoinflammatory pathways involved in FMF.
View Article and Find Full Text PDFCandida albicans is the most common cause of fungal sepsis. Inhibition of inflammasome activity confers resistance to polymicrobial and LPS-induced sepsis; however, inflammasome signaling appears to protect against C. albicans infection, so inflammasome inhibitors are not clinically useful for candidiasis.
View Article and Find Full Text PDFRegulatory T cell (T) activation and expansion occur during neonatal life and inflammation to establish immunosuppression, yet the mechanisms governing these events are incompletely understood. We report that the transcriptional regulator c-Myc (Myc) controls immune homeostasis through regulation of T accumulation and functional activation. Myc activity is enriched in T generated during neonatal life and responding to inflammation.
View Article and Find Full Text PDFPyroptosis is an inflammasome-induced lytic cell death mode, the physiological role of which in chronic inflammatory diseases is unknown. Familial Mediterranean Fever (FMF) is the most common monogenic autoinflammatory disease worldwide, affecting an estimated 150,000 patients. The disease is caused by missense mutations in that activate the Pyrin inflammasome, but the pathophysiologic mechanisms driving autoinflammation in FMF are incompletely understood.
View Article and Find Full Text PDFAutophagy is a biological process characterized by self-digestion and involves induction of autophagosome formation, leading to degradation of autophagic cargo. Aging is associated with the reduction of autophagy activity leading to neurodegenerative disorders, chronic inflammation, and susceptibility to infection; however, the underlying mechanism is unclear. DNA methylation by DNA methyltransferases reduces the expression of corresponding genes.
View Article and Find Full Text PDFL. pneumophila is the causative agent of Legionnaires' disease, a human illness characterized by severe pneumonia. In contrast to those derived from humans, macrophages derived from most mouse strains restrict L.
View Article and Find Full Text PDFInflammasomes are multiprotein complexes that include members of the NOD-like receptor family and caspase-1. Caspase-1 is required for the fusion of the Legionella vacuole with lysosomes. Caspase-11, independently of the inflammasome, also promotes phagolysosomal fusion.
View Article and Find Full Text PDF