Publications by authors named "Apriletti J"

Nuclear receptors are important targets for pharmaceuticals, but similarities between family members cause difficulties in obtaining highly selective compounds. Synthetic ligands that are selective for thyroid hormone (TH) receptor beta (TRbeta) vs. TRalpha reduce cholesterol and fat without effects on heart rate; thus, it is important to understand TRbeta-selective binding.

View Article and Find Full Text PDF

Some nuclear receptor (NR) ligands promote dissociation of radiolabeled bound hormone from the buried ligand binding cavity (LBC) more rapidly than excess unlabeled hormone itself. This result was interpreted to mean that challenger ligands bind allosteric sites on the LBD to induce hormone dissociation, and recent findings indicate that ligands bind weakly to multiple sites on the LBD surface. Here, we show that a large fraction of thyroid hormone receptor (TR) ligands promote rapid dissociation (T(1/2)<2h) of radiolabeled T(3) vs.

View Article and Find Full Text PDF

Thyroid hormone nuclear receptors (TRs) bind to DNA and activate transcription as heterodimers with the retinoid X receptor (RXR) or as homodimers or monomers. RXR also binds to DNA and activates transcription as homodimers but can, in addition, self-associate into homotetramers in the absence of ligand and DNA templates. It is thought that homotetramer formation serves to sequester excess RXRs into an inactive pool within the cell.

View Article and Find Full Text PDF

Selective thyroid hormone modulators that function as isoform-selective agonists or antagonists of the thyroid hormone receptors (TRs) might be therapeutically useful in diseases associated with aberrant hormone signaling. The most potent thyroid hormone antagonist reported to date is NH-3. To explore the significance of the 5'-p-nitroaryl moiety of NH-3 and understand what chemical features are important to confer antagonism, we sought to expand the structure-activity relationship data for the class of 5'-phenylethynyl GC-1 derivatives.

View Article and Find Full Text PDF

Thyroid hormone (TH) actions are mediated by nuclear receptors (TRs alpha and beta) that bind triiodothyronine (T(3), 3,5,3'-triiodo-l-thyronine) with high affinity, and its precursor thyroxine (T(4), 3,5,3',5'-tetraiodo-l-thyronine) with lower affinity. T(4) contains a bulky 5' iodine group absent from T(3). Because T(3) is buried in the core of the ligand binding domain (LBD), we have predicted that TH analogues with 5' substituents should fit poorly into the ligand binding pocket and perhaps behave as antagonists.

View Article and Find Full Text PDF

Although there is clinical utility in blocking mineralocorticoid receptor (MR) action, the usefulness of available MR antagonists is limited because of cross-reactivity with the androgen and progesterone receptors (spironolactone) or possibly by low affinity for MR (eplerenone). MR binds aldosterone and physiologic glucocorticoids, such as cortisol, which both can act as MR agonists in epithelial tissues. However, in preliminary studies aldosterone and cortisol appear to induce different conformations in non-epithelial tissues; in the cardiomyocyte, cortisol usually acts as an MR antagonist, whereas in vascular smooth muscle cortisol mimics aldosterone actions if it can access MR, just as it does in the kidney.

View Article and Find Full Text PDF

The thyromimetic GC-1 shows a preference for binding the beta form of the thyroid hormone receptor (TR). GC-1 was designed as an analogue of the thyromimetic DIMIT, which has a lower affinity for TR and is not selective. GC-1 has a methylene group linking its two aromatic rings and an oxyacetic acid polar side chain, while DIMIT has an ether oxygen linking its aromatic rings and an l-alanine polar side chain.

View Article and Find Full Text PDF

It is desirable to obtain TR antagonists for treatment of hyperthyroidism and other conditions. We have designed TR antagonists from first principles based on TR crystal structures. Since agonist ligands are buried in the fold of the TR ligand binding domain (LBD), we reasoned that ligands that resemble agonists with large extensions should bind the LBD, but would prevent its folding into an active conformation.

View Article and Find Full Text PDF

Resistance to hormones is commonly due to mutations in genes encoding receptors. Resistance to thyroid hormone is due mostly to mutations of the beta-form of the human (h) thyroid hormone receptor (hTRbeta). We determined x-ray crystal structures of two hTRbeta ligand-binding domains (LBDs), Ala 317 Thr and Arg 316 His.

View Article and Find Full Text PDF

Nuclear receptors are ligand-inducible transcription factors that share structurally related DNA-binding (DBD) and ligand-binding (LBD) domains. Biochemical and structural studies have revealed the modular nature of DBD and LBD. Nevertheless, the domains function in concert in vivo.

View Article and Find Full Text PDF

Nuclear receptors are ligand-modulated transcription factors that transduce the presence of lipophilic ligands into changes in gene expression. Nuclear receptor activity is regulated by ligand-induced interactions with coactivator or corepressor molecules. From a positive hormone response element (pHRE) and in the absence of hormone, corepressors SMRT and N-CoR are bound to some nuclear receptors such as the thyroid hormone (T3Rs) and retinoic acid receptors and mediate inhibition of basal levels of transcription.

View Article and Find Full Text PDF

Recent efforts have focused on the design and synthesis of thyroid hormone (T(3)) antagonists as potential therapeutic agents and chemical probes to understand hormone-signaling pathways. We previously reported the development of novel first-generation T(3) antagonists DIBRT, HY-4, and GC-14 using the "extension hypothesis" as a general guideline in hormone antagonist design.(1-3) These compounds contain extensions at the 5'-position (DIBRT, GC-14) of the outer thyronine ring or from the bridging carbon (HY-4).

View Article and Find Full Text PDF

Antagonists have been developed for several nuclear receptors but not for others, including TRs. TR antagonists may have significant clinical utility for treating hormone excess states and other conditions. A structure derived "extension hypothesis" was applied to synthesize a TR antagonist.

View Article and Find Full Text PDF

Compounds that selectively modulate thyroid hormone action by functioning as isoform-selective agonists or antagonists of the thyroid hormone receptors (TRs) might be useful for medical therapy. We have synthesized a high affinity TRbeta-selective agonist ligand, GC-1, and optimized the synthetic route to provide large quantities of the compound for animal testing. In addition to an improvement in efficiency, the new synthetic route offers a chemical handle for selective modification of the thyronine skeleton to produce new derivatives.

View Article and Find Full Text PDF

We synthesized an analogue of the thyromimetic GC-1 bearing the same hydrophobic appendage as the estrogen receptor antagonist ICI-164,384. While having reduced affinity for the thyroid hormone receptors compared to GC-1, it behaves in a manner consistent with a competitive antagonist in a transactivation assay.

View Article and Find Full Text PDF

Thyroid hormones have some actions that might be useful therapeutically, but others that are deleterious. Potential therapeutically useful actions include those to induce weight loss and lower plasma cholesterol levels. Potential deleterious actions are those on the heart to induce tachycardia and arrhythmia, on bone to decrease mineral density, and on muscle to induce wasting.

View Article and Find Full Text PDF

Separate genes encode thyroid hormone receptor subtypes TRalpha (NR1A1) and TRbeta (NR1A2). Products from each of these contribute to hormone action, but the subtypes differ in tissue distribution and physiological response. Compounds that discriminate between these subtypes in vivo may be useful in treating important medical problems such as obesity and hypercholesterolemia.

View Article and Find Full Text PDF

Thyroid hormone receptors (TRs) bind as homodimers or heterodimers with retinoid X receptors (RXRs) to DNA elements with diverse orientations of AGGTCA half-sites. We performed a comprehensive x-ray crystal structure-guided mutation analysis of the TR ligand binding domain (TR LBD) surface to map the functional interface for TR homodimers and heterodimers with RXR in the absence and/or in the presence of DNA. We also identified the molecular contacts in TR LBDs crystallized as dimers.

View Article and Find Full Text PDF

Thyroid hormone (T3) receptors (T3Rs) are ligand-modulated transcription factors that belong to the nuclear receptor superfamily. Whereas the well-conserved DNA-binding domain and the relatively well-conserved ligand-binding domain in T3Rs have been characterized in detail, limited information is available on the contribution of the variable N terminus to the transcriptional properties of T3Rs. To gain greater insight into the function of the N terminus, we generated a deletion mutant of T3Ralpha, T3Ralpha-deltaN1, that lacks amino acids 7-45 and assessed the effect of this deletion on all known transcriptional activities of T3Ralpha.

View Article and Find Full Text PDF

1. Thyroid hormone receptors (TR) are expressed from two separate genes (alpha and beta) and belong to the nuclear receptor superfamily, which also contains receptors for steroids, vitamins and prostaglandins. 2.

View Article and Find Full Text PDF

Combinatorial regulation of transcription implies flexible yet precise assembly of multiprotein regulatory complexes in response to signals. Biochemical and crystallographic analyses revealed that hormone binding leads to the formation of a hydrophobic groove within the ligand binding domain (LBD) of the thyroid hormone receptor that interacts with an LxxLL motif-containing alpha-helix from GRIP1, a coactivator. Residues immediately adjacent to the motif modulate the affinity of the interaction; the motif and the adjacent sequences are employed to different extents in binding to different receptors.

View Article and Find Full Text PDF

This review summarizes the studies conducted in our laboratory on the mechanisms of thyroid hormone action over the past two decades. We have attempted to place our studies on thyroid hormone receptors (TRs) in perspective with the work conducted by other investigators that established their nuclear localization, DNA-binding properties, DNA response elements, and the role of other proteins involved in TR-mediated regulation of gene transcription. Recently, our crystallographic studies of the TR ligand binding domain (LBD) revealed that the ligand has a structural role in the folding of the receptor's hydrophobic core.

View Article and Find Full Text PDF

We have solved several X-ray crystallographic structures of TR ligand-binding domains (LBDs), including the rat (r) TR alpha and the human (h) TR beta bound to diverse ligands. The TR-LBD folding, comprised mostly of alpha-helices, is likely to be general for the superfamily. The ligand, buried in the receptor, forms part of its hydrophobic core.

View Article and Find Full Text PDF

The thyroid hormone L-T3 elicits either a stimulatory or an inhibitory effect on expression of the Na,K-adenosine triphosphatase alpha3-subunit gene in primary cultures of neonatal rat cardiac myocytes. The present study was undertaken to characterize a negative thyroid hormone response element present within the rat Na,K-adenosine triphosphatase alpha3-subunit gene proximal promoter. Transient transfection assays indicated that the DNA-binding domain of thyroid hormone receptor was essential for mediating repression of alpha3 gene transcription by thyroid hormone.

View Article and Find Full Text PDF

Background: Thyroid hormones regulate many different physiological processes in different tissues in vertebrates. Most of the actions of thyroid hormones are mediated by the thyroid hormone receptor (TR), which is a member of the nuclear receptor superfamily of ligand-activated transcription regulators. There are two different genes that encode two different TRs, TR alpha and TR beta, and these two TRs are often co-expressed at different levels in different tissues.

View Article and Find Full Text PDF