Nonspecific interactions between cells and implantable elastomers often leads to failure modes for devices such as catheters, cosmetic and reconstructive implants, and sensors. To reduce these interactions, device surfaces can be coated with hydrophilic polymers, where greater polymer density enhances antifouling properties. Although graft-from coating techniques result in higher density polymer films and lower fouling in controlled settings, simpler graft-to methods show similar results on complex implanted devices, despite limited density.
View Article and Find Full Text PDFAntifouling polymer coatings that are simple to manufacture are crucial for the performance of medical devices such as biosensors. "Grafting-to", a simple technique where presynthesized polymers are immobilized onto surfaces, is commonly employed but suffers from nonideal polymer packing leading to increased biofouling. Herein, we present a material prepared via the grafting-to method with improved antifouling surface properties and intrinsic localized surface plasmon resonance (LSPR) sensor capabilities.
View Article and Find Full Text PDF