Microarray-based comparative genomic hybridization can determine genome-wide copy number alterations at the kilobase level. We highlight the clinical utility of microarray-based comparative genomic hybridization in determining tumor susceptibility in 3 patients with dysmorphic features and developmental delay, likely decreasing both morbidity and mortality in these patients.
View Article and Find Full Text PDFSupernumerary marker chromosomes (SMCs) are common, but their molecular content and mechanism of origin are often not precisely characterized. We analyzed all centromere regions to identify the junction between the unique chromosome arm and the pericentromeric repeats. A molecular-ruler clone panel for each chromosome arm was developed and used for the design of a custom oligonucleotide array.
View Article and Find Full Text PDFSubtelomeric imbalances have been implicated in developmental delay and mental retardation (MR) and described for most chromosomes. This study reports the first detailed description of two individuals with de novo 12q subtelomere deletions and high-resolution mapping of their deletion size with oligonucleotide array CGH for genotype/phenotype comparisons. Patient 1 is an 8-year-old male with borderline mild MR, food-seeking behavior, obesity, no significant dysmorphic facial features, abnormal hair whorl pattern, brachydactyly and mild clinodactyly.
View Article and Find Full Text PDFSubmicroscopic telomere imbalances are a significant cause of mental retardation with or without other phenotypic abnormalities. We previously developed a set of unique telomere clones that identify imbalances in 3% to 5% of children with unexplained mental retardation and a normal karyotype. This targeted screening approach, however, does not provide information about the size or gene content of the imbalance.
View Article and Find Full Text PDF